PRESENT LANDFILL # CLOSURE PLAN U.S. DEPARTMENT OF ENERGY ROCKY FLATS PLANT GOLDEN, COLORADO JULY 1, 1988 ROCKVELL INTERNATIONAL NORTH AMERICAN SPACE OPERATIONS ROCKVELATS PLANT >uv # TABLE OF CONTENTS | 1.0 | INTRODUCTION | 1. | |--|---|----------------------------------| | 1.1 | Description of Rocky Flats Plant
L.1 Location and Operator
L.2 Mission
L.3 Brief History | 1
1
3
4 | | | | | | 1.2 | - | 6 | | | taran da ara-ara-ara-ara-ara-ara-ara-ara-ara-ar | | | 2.0 | PRESENT LANDFILL | 7 | | 2.1 | Introduction | 7 | | | Construction History | 9 | | (1) (2) (2) (3) (2) (3) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | Previous Landfill Operations 2.3.1 Disposal Policies 2.3.2 Disposal Procedures 2.3.3 Disposal of Solid and Hazardous Waste 2.3.4 Volumes of Waste 2.3.5 Spray Fields and Collection Systems 2.3.6 Monitoring Activities | 16
19
20
27
30
32 | | 2.4 | Current Landfill Operations 2.4.1 Disposal Policies and Procedures 2.4.2 Disposal of Solid and Hazardous Wastes 2.4.3 Volumes of Waste 2.4.4 Spray Fields and Collection Systems | 33
33
34
39
39 | | 2.5 | Maximum Waste Inventory | 40 | | 2.6 | Description of Auxiliary Equipment | 40 | | 2.7 | Final Closure Plan Summary 2.7.1 Closure Objectives 2.7.2 Closure Plan 2.7.3 Closure Schedule 2.7.4 Justification for Extension of Schedule 2.7.5 Protection of Human Health and the | 40
41
41
42
46 | | | Environment 2.7.6 Final Design | 47
51 | Date: July 1, 1988 Revision No.: 1 | 2.8 | Administration of Closure Plan | 55 | |-----|--|--| | 2.9 | Closure Cost Estimates and Financial Assurance | 56 | | 3.0 | DECONTAMINATION PROCEDURES | 58 | | | Sprayfield Areas 3.1.1 Sprayfield Boundaries 3.1.2 Soil Sampling 3.1.3 Laboratory Analysis 3.1.4 Criteria for Evaluating Soil Contamination 3.1.5 Method of Treatment or Disposal 3.1.6 Schedule | 58
58
61
61
61 | | 3.2 | Decontamination of Equipment 3.2.1 Introduction 3.2.2 Decontamination Procedures 3.2.3 Auxiliary Equipment 3.2.4 Construction Equipment Used During Closure | 63
63
65
65 | | 4.0 | FINAL COVER | 66 | | 4.1 | Regrading 4.1.1 Surface Runon Control 4.1.2 Landfill Regrading | 66
68 | | 4.2 | Final Cover 4.2.1 Final Cover Extent 4.2.2 Erosion Control 4.2.3 Drainage Control 4.2.4 Infiltration Control 4.2.5 Cover Equipment 4.2.6 Final Cover Design 4.2.7 Final Cover Stability 4.2.8 Infiltration Control 4.2.9 Cover Equipment | 70
71
73
79
81
82
83
84
87 | | 4.4 | Vegetation | 92 | | 4.5 | Final Cover Maintenance | 93 | | 4.6 | Health and Safety Plan | . 0. 1 | | 4.7 | Quality Assurance and Quality Control 4.7.1 Quality Control 4.7.2 Quality Assurance | 96
96
99 | | | | | | |-----|--|--|--|--|--|--|--| | 5.0 | COLLECTION, REMOVAL AND TREATMENT OF LEACHATE AND GROUND-WATER CONTROL | 100 | | | | | | | 5.1 | Introduction | 100 | | | | | | | 5.2 | Leachate Collection System 5.2.1 Existing Leachate Collection System 5.2.2 Volume of Leachate | 101
101
102 | | | | | | | 5.3 | Ground-Water Control System 5.3.1 Introduction 5.3.1.1 Blanket Drain 5.3.1.2 Slurry Wall 5.3.2 Proposed Ground-Water Collection System 5.3.2.1 Introduction 5.3.2.2 Proposed Collection System | 102
102
103
104
105
106 | | | | | | | 5.4 | Water Storage | 108 | | | | | | | 5.5 | Water Treatment | 108 | | | | | | | 5.6 | Ground-Water Monitoring | 109 | | | | | | | 6.0 | GAS COLLECTION | 111 | | | | | | | 6.1 | Introduction | 111 | | | | | | | 6.2 | Soil-Gas Survey | 112 | | | | | | | 6.3 | Gas Collection System | 112 | | | | | | | 6.4 | Gas Collection System Maintenance | 114 | | | | | | | 7.0 | INSTALLATION AND MAINTENANCE OF FENCE | 115 | | | | | | | 8.0 | CLOSURE CERTIFICATION | 116 | | | | | | | 8.1 | Certification Requirements | | | | | | | | 8.2 | Activities Requiring Inspections by a
Registered Professional Engineer | 117 | |-----|--|-----| | 8.3 | Anticipated Schedule of Inspections by a
Registered Professional Engineer | 118 | REFERENCES # LIST OF FIGURES | Figure | 1 | - | Vicinity Map | 2 | |--------|----|------------|---|----| | Figure | 2 | - | Present Landfill Site Map | 8 | | Figure | 3 | - | Present Landfill Collection Systems | 12 | | Figure | 4 | - | Typical Leachate and Ground-water Collection System | 13 | | Figure | 5 | - | Closure Plan Activity Flow Diagram | 43 | | Figure | 6 | - | Summary of Landfill Closure Activities | 44 | | Figure | 7 | _ | Summary of Landfill Design Activities | 45 | | Figure | 8 | - | Sprayfield Activities Flow Diagram | 59 | | Figure | 9 | - | Diversion Ditch Sections | 67 | | Figure | 10 |)- | Proposed Landfill Regrading Prior to Final Cover | 69 | | Figure | 1: | L - | Proposed Final Cover | 72 | | Figure | 12 | 2 – | Proposed Final Cover Sections | 74 | | Figure | 1: | 3 – | Proposed Ground Water Collection Systems | 89 | | CC |)7 | 8 | 9 | 0 | O | 1 | n | 5 | 2 | 6 | |----|----|---|---|---|---|---|---|---|---|---| | | | | | | | | | | | | # LIST OF TABLES | Table | I - Solid Waste Stream to Landfill | 22 | |-------|---|----| | Table | II - Hazardous Waste Stream to Landfill | 27 | | Table | III - Recommended Solid Waste Stream to Landfill | 35 | | Table | <pre>IV - Landfill Closure Estimated Construction Costs</pre> | 57 | Date: July 1, 1988 Revision No.: 1 #### LIST OF APPENDICES - Appendix 1 Engineering Drawings - Appendix 2 Volumes and Engineering Calculations - Appendix 3 Soil-Gas Survey - Appendix 4 Site Characterization Plan North Sprayfield - Appendix 5 Quality Assurance/Quality Control Procedures for Soil Characterization - Appendix 6 Landfill Hydrogeologic Characterization Report Landfill Closure Plan #### 1.0 INTRODUCTION ### 1.1 Description of the Rocky Flats Plant # 1.1.1 Location and Operator The U.S. Department of Energy's Rocky Flats Plant is located in north-central Colorado, northwest of the City of Denver (Figure 1). The Plant is located in Sections 1 through 4 and 9 through 15 of T. 2 S., R. 70 W. The facility's EPA identification number is CO7890010526. The mailing address is: U.S. Department of Energy Rocky Flats Plant P.O. Box 928 Golden, Colorado 80402 The facility contact is: Albert E. Whiteman, Area Manager Phone: (303) 966-2025 The facility covers approximately 6,550 acres of federally owned land in northern Jefferson County, Colorado, which is centered at 105° 11' 30" west longitude, 39° 53' 30" north latitude. The facility is approximately 16 miles northwest P Date: July 1, 1988 Revision No.: 1 of Denver and nine to 12 miles from the neighboring communities of Boulder, Broomfield, Golden and Arvada. It is bounded on the north by State Highway 128, on the west by a parcel of land east of State Highway 93, on the south by a parcel of land north of State Highway 72 and on the east by Jefferson County Highway 17. Access to the plant is from an east access road exiting from Jefferson County Highway 17 and a west access road exiting from State Highway 93. The facility is situated at an elevation of approximately 6,000 feet. It is on the eastern edge of a geological bench known locally as Rocky Flats. The bench is approximately five miles wide and flanks the eastern edge of the foothills of the Rocky Mountains. #### 1.1.2 Mission The Rocky Flats Plant is a government-owned and contractoroperated facility. It is part of a nationwide nuclear weapons research, development and production complex administered by the Albuquerque Operations Office of the U.S. Department of Energy (DOE). The prime operating contractor for the Rocky Flats Plant is Aerospace Operations of Rockwell International. The facility produces metal components for nuclear weapons; therefore, its product is directly related to national defense. The facility fabricates components from plutonium, uranium, beryllium and stainless steel. Other production activities include chemical recovery and purification of recyclable transuranic radionuclides, metal fabrication and assembly and related quality control functions. Other activities include research and development in metallurgy, machining, non-destructive testing, coatings, remote engineering, chemistry and physics. Parts made at the plant are shipped elsewhere for final assembly (U.S. Department of Energy, 1987a). ## 1.1.3 Brief History Construction of the Rocky Flats Plant was approved by the U.S. Government in 1951 as an addition to the nation's nuclear weapons production complex. Operations began in 1952 under direction of the Atomic Energy Commission. The original facility covered an area of approximately 2,520 acres (Figure 1). Date: July 1, 1988 Revision No.: 1 A buffer zone was added in 1974-1975 to enlarge the plant to its present size of approximately 6,550 acres. The buffer zone had been used for grazing cattle and horses and is enclosed within a cattle fence which is posted with signs indicating restricted access. Two office buildings, a warehouse, firebreaks, holding ponds along three water courses, environmental monitoring instrumentation, a sanitary
landfill area, a salvage yard, power lines, inactive gravel pits, clay pits and two target ranges are located in the buffer zone. Additionally, a former wind energy test site now used as an office building and a Ground Wave Emergency Network (GWEN) tower being installed by the U.S. Air Force are located in the buffer zone. Major facility structures are located in a 400-acre controlled area near the center of the property. Production, research and development facilities at the plant are located in the controlled area which contains approximately 134 structures with a combined floor space of approximately 2.67 million square feet. ## 1.2 Summary of the Landfill Closure Plan A description of the construction and operations at the landfill historically and presently is presented in Section 2.0. Decontamination procedures for equipment and north sprayfield, potentially, are presented in Section 3.0. Sections 4.0, 5.0 and 6.0 discuss primarily the proposed closure design for the landfill which include a multi-layer cover, ground water and gas collection systems, respectively. Sections 7.0 and 8.0 discuss the security at the landfill and certification of closure. Date: July 1, 1988 Revision No.: 1 ## 2.0 PRESENT LANDFILL #### 2.1 Introduction The present landfill was placed in operation on August 14, 1968, after a study determined that a landfill operation would be the most efficient and economical means to dispose of the plant's nonradioactive solid waste. A number of available sites within the plant's boundaries were evaluated. The site selected was located on the western end of an unnamed tributary to North Walnut Creek as shown on Figure 1. Currently, the landfill is accepting nonhazardous solid waste at a rate of approximately 115 cubic yards per work day. At this time, the landfill covers approximately 765,000 square feet of land, as shown on Figure 2. In areas where disposal is no longer occurring, generally three feet of compacted soil was placed on top of the waste. This soil material reduces wind dispersion and infiltration. There is presently little vegetative growth on this soil layer. #### 2.2 Construction History When the landfill was initially placed in operation in 1968, the west end of the drainage channel was filled with on-site soils from a borrow area, to a depth of five feet and approximately 20 feet in length across the channel. In September 1973, tritium was detected at the drainage of the Rocky Flats landfill. In response, approximately 57 monitoring wells were installed directly into the landfill waste or immediately below the waste materials. In addition, two temporary berms were constructed to provide management capability for any leachate or surface water generated by the landfill. The two ponds were named Pond #1 and Pond #2, and were located east of the landfill, as shown on Figure 2. These ponds consisted of a drainage barrier across the channel, which reduced the flow in the tributary. There was a sprinkler pumping station located adjacent to the west pond, Pond #1. Through the installation of the monitoring wells, the source of tritium was fairly well identified. The depth and configuration of the source remain unknown. It was estimated in 1974 that the tritium was disposed of in the landfill in 1970. Several options were evaluated for the correction of the problem, including excavation. The selected action was to construct a series of collection systems around the landfill. By 1974, the landfill had expanded in surface area to approximately 300,000 square feet (Figure 2). At that time, a project was undertaken to perform the renovations at the landfill selected in response to the discovery of the tritium source (Zeff, 1974). These renovations included the construction of a permanent pond embankment east of the landfill, a ground-water intercept system for uncontaminated ground water, a leachate collection system and surface water control ditches. The purpose of the west pond, Pond #1, was to provide a permanent structure to impound any leachate generated by the landfill for management purposes. The east pond, Pond #2, was the larger pond, and was intended as a backup system for any overflow from Pond #1. Pond #2 also was to allow collection of intercepted ground water, if necessary. The area of each pond was approximately The intent of these systems was to protect surface water and ground water from any leachate generated by the landfill. Construction of these systems began in October 1974, and was completed in January 1975. The collection systems consisted of a surface water interceptor ditch and a combined leachate and ground-water interceptor ditch. The purpose of the surface water collection system was to intercept any surface water runoff flowing toward the landfill, and then to direct this water away from the landfill. The ditch was constructed around the exterior of the landfill as shown on Figure 3. In cross-section, the ditch was trapezoidal and approximately three feet deep, with steep side slopes. The leachate and ground-water collection systems were constructed between the surface water interceptor ditch and the landfill, to divert ground-water flow around the landfill, to collect leachate generated in the landfill, and to provide an additional disposal area (Figure 3). The two-part system was constructed by excavating around the perimeter of the solid wastes to depths of ten to 25 feet. The trench excavation for the system was 24 feet wide at the base, as shown on Figure 4. The ground-water collection portion of the system was installed on the side of the trench away from the landfill waste. This system consisted of a one foot sand and gravel blanket, installed along the trench face. This blanket was designed to intercept ground water and drained to a six-inch OD perforated pipe installed SCALE 1'=20' AS-BUILT SECTION C07890010526 Date: July 1, 1988 Revision No.: 1 in the bottom of the trench. The intercepted waters could then be discharged to the west pond, east pond or to surface drainages downgradient of the east pond by a series of valves. On top of the sand and gravel blanket, a ten-foot wide clay surface seal was placed, which separated the ground-water collection system from the leachate collection system. This clay seal was designed to be cut into bedrock. The leachate collection system consisted of a five-foot thick gravel backfill placed in the bottom of the trench on the landfill side. The collected leachate and ground water and surface runoff were diverted into the west pond. The west pond was constructed to retain the waters without discharging to the east pond. The new east pond embankment was constructed in approximately the same location as the barrier for Pond #2, 1,500 feet east of the 1974 position of the landfill. The new embankment had a spillway, and was designed to retain the majority of the water in the channel. A cutoff trench, set in bedrock, was constructed within the east pond embankment to reduce seepage through the embankment foundation. The previous Pond #1 was subsequently referred to as the West Pond. In 1977, another geotechnical study (Lord, 1977) was conducted for expansion of the landfill, and to locate an additional borrow area north of the landfill. At the request of Rockwell International, the Colorado Department of Health inspected the landfill in 1978 and 1979. The Department of Health stated the landfill appeared to comply with state and federal minimum standards and department regulations (Colorado Department of Health, 1979). The Department of Health determined that a certificate of designation for landfilling of wastes was not required. Between 1977 and 1981, the leachate and ground-water collection system was buried during landfill expansion. The eastward expansion covered the discharge points of the leachate collection system. The west embankment and pond were removed in May of 1981 to allow further eastward expansion of the landfill. In addition, two slurry walls were constructed in 1981 to extend the ground-water barriers already in place. The slurry walls were constructed to C07890010526 Date: July 1, 1988 Revision No.: 1 reduce ground-water migration into the expanded landfill. Design drawings of the construction are presented in Appendix 1. These slurry walls were connected to the eastern ends of the ground-water interceptor ditch on the north and south arms of the ditch (Figure 3). The slurry walls were to tie-in to the clay liner constructed in 1974. The details of the connection (Appendix 1) indicate the wall would extend into the leachate collection system and cut-off the sand drain at the connection. The slurry walls extended eastward approximately 700 feet from this point. Based on design drawings, the slurry walls varied in depth from ten to 25 feet and were to be seated in bedrock. ## 2.3 Previous Landfill Operations #### 2.3.1 Disposal Policies Operations at the landfill have continuously evolved since the landfill commenced operations in 1968, in response to changes in the regulatory statutes. The landfill was originally constructed to provide an efficient and economical means for disposing of the plant's non-contaminated solid wastes. These wastes included paper, rags, floor sweepings, cartons, mixed garbage and rubbish, Date: July 1, 1988 Revision No.: 1 demolition materials and miscellaneous items. In October 1972 the policies concerning disposal of waste at the landfill were reviewed and judged to be in accordance with applicable state and federal regulations. The landfill was not intended to be used for disposal of radioactive wastes, and in December 1972 guidelines were issued which addressed burial of radioactively contaminated wastes. These guidelines set levels for the permissible radiation limits of wastes to be buried, as well as the minimum depth of burial and the maximum number of burials per year. Additional guidelines were issued in February 1973 to control the burial of solid and liquid
wastes in the landfill. Detectable contaminant concentrations were established for specific radioactive materials, such as plutonium, in both solid and liquid phases. In addition, prior approval was required for the burial of "non-contaminated but potentially hazardous solid materials," and for all liquids to be disposed in the landfill. The Health Physics Operation began a program in 1973 of radioactive monitoring and scanning of the waste after it had been dumped and prior to compaction and burial. A logging procedure was instituted at that time to maintain control on where the wastes were originating in case of potential radioactive contamination. 1988 In July 1977, a solid waste management plan was prepared to establish guidelines and procedures for landfill disposal. This plan was prepared in compliance with 40 CFR 241 and IAD 0510-35. Material acceptability standards were addressed, and guidelines were established for radioactive waste disposal. These guidelines stated that "no radioactive materials shall be deposited in the landfill," and set the basis for acceptance as the limits of radioactive material detectability. Further guidelines were established to prohibit liquids, "special items" and "nonroutine wastes" from being disposed of in the landfill, except by special permit. Permits were issued by the Waste Management Section and the Hazardous Materials Committee of Rockwell International. Procedures established by the 1977 Solid Waste Management plan included both radiation monitoring and ground-water monitoring programs. Radiation monitoring included measurements at the point of waste origination and at the landfill. The ground-water monitoring program consisted of sampling those wells at the landfill site once every five months. The water samples were analyzed for plutonium, gross alpha, conductivity, pH and nitrate. The July 1977 solid waste management plan is currently in effect. #### 2.3.2 Disposal Procedures The disposal procedures utilized at the landfill have not significantly changed since the landfill went into operation in 1968. Waste is delivered to the landfill throughout the morning and early afternoon. In mid-afternoon, the delivery of waste stops and the waste is spread across the work area. In 1973, a monitoring program was initiated at this stage of disposal. Measurements of the spread waste are made using a FIDLER probe (Field Instrument for Detection of Low Energy Radiation). Radioactive items have occasionally been found since the monitoring procedure was instituted. All such items have been removed, packaged and shipped to an out-of-state U.S. Department of Energy disposal facility. These monitoring practices were developed after the discovery of a tritium source within the landfill wastes. After the monitoring is complete, the waste layer is compacted and covered with six inches of soil from on-site stockpiles. The disposal of wastes continues in this manner until the waste layer is within three feet of the final elevation. The lift is then completed by the addition of a three-foot thick layer of compacted soil. In different sections of the landfill, the total landfill thickness consists of between one and three such lifts. Based on visual observation, some areas of the landfill surface may not have received a full three-foot layer of compacted soil. ## 2.3.3 Disposal of Solid and Hazardous Wastes The landfill was designed for disposal of the plant's non-radioactive solid waste, including office trash, garbage, demolition materials and miscellaneous items. The exclusion of detectable radioactive materials from disposal has been accomplished by monitoring procedures established in 1973. In 1986 and 1987, studies were conducted to identify waste streams generated at the Rocky Flats plant (Weston, 1986a, b, c and d). At that time, approximately 1,500 waste streams were identified. At the time of the study, 338 of these waste streams were being sent to the landfill for disposal. This included 241 waste streams identified as nonhazardous solid waste, and 97 solid waste streams which contained hazardous waste or hazardous constituents. The nonhazardous solid waste streams being disposed of in the landfill included office trash, empty cans and containers, used filters and various electrical components. Also included in this waste stream were dried sanitary sewage sludge, solid sump sludge and other miscellaneous sludges. A summary of these waste streams is given in Table I. The waste streams identified as hazardous fell into four general categories. The first consisted of containers partially filled with paint, solvents, degreasing agents and foam polymers. Another category was kimwipes and rags which were contaminated with the same materials. Filters were also included in the hazardous waste streams and were typically silicone oil filters, paint filters, oil filters, and other used filters which may have contained hazardous constituents. The final category consisted of metal cuttings and shavings, including mineral and asbestos dust, and miscellaneous metal chips coated with hydraulic oil and Table I Solid Waste Stream to Landfill (1986) | | | | (1700) | | | | |-----------------|----------------|--|---------------------------|-----------------------|---------------|-------------------------------------| | BUILDING
NO. | WASTE
NO. | WASTE NAME | WASTE TYPE | QUANTITY
GENERATED | | GENERATION
FREQUENCY | | | | | | | | | | 111 | 06780 | developer and fixer containers | empty containers | | lbs/yr | as needed | | 111 | 06630 | kimwipes and rags | solid | 240 | | continous | | 111 | 06610 | toner and dispersant containers | empty containers | 3 | | 2 per month | | 111 | 06820 | empty developer and fixer container | | 100 | | as needed | | 111 | 06680 | empty solvent containers | empty containers | 3 | | 1 per month | | 111 | 06640 | empty toner containers | empty containers | 10 | | 3 per week | | 111 | 06690 | kimwipes and rags | solid | 240 | | continous | | 111 | 06670 | empty ink cans | empty containers | 12
100 | | 3-4 per month as needed | | 111
111 | 06800
06650 | kimwipes and filmpacks
demineralizer system filters | solid
solid | 24 | | 1 per month | | 111 | 06760 | kimwipes and rags | solid | 100 | | i per monen | | 111 | 06740 | empty chemical containers | empty containers | 100 | | as needed | | 121 | 04810 | solid waste | solid | 100 | | intermittant | | 121 | 04780 | gun patches | solid | 50 | | continuous | | 123 | 02830 | waste resin | aqueous | 3 | | batch | | 123 | 03080 | batteries, metalwire, used elec.comp. | | 500 | | continuous | | 123 | 03000 | empty vials | solid | 100 | | batch | | 123 | 02880 | waste resin | solid | 50 | | batch | | 123 | 03070 | kimwipes | solid | 200 | | continuous . | | 124 | 01910 | settling basin sludge | aqueous | | gal/yr | | | 124 | 00010 | microstrainer backwash | aqueous | 180000 | gal/yr | summer operation | | 124 | 00020 | clarifier underflow | aqueous | | | continuous | | 124 | 00030 | sand filter backwash | aqueous | | | intermittent | | 124 | 01660 | dried sludge | solid | | lbs/yr | - | | 125 | 02550 | kimwipes | solid | 100
5 | | continuous | | 125 | 02730 | oil filters | solid | 100 | | intermittant | | 130
130 | 07350
07400 | copy machine toner
rejected bags | empty containers
solid | 200 | | as needed
as needed | | 130 | 07330 | polaroid film backings | solid | 100 | | as needed | | 130 | 07390 | kimwipes | solid | 100 | | as needed | | 130 | 07360 | packing materials | solid | 100 | | intermittent | | 130 | 07380 | water conditioning filters | solid | 5 | | twice per month | | 130 | 07340 | floor sweepings | solid | 100 | | as needed | | 223 | 06840 | compressor oil filter | solid | 1 | | 1 filter/2 years | | 331 | 06430 | oil filters and used parts | solid | 500 |) | daily | | 331 | 06440 | paint and body-filler cans | solid | 200 |) | as needed | | 333 | 06230 | shavings | solid | 100 | | daily | | 333 | 06220 | sawdust | solid | 100 | | as needed | | 333 | 06110 | filters | solid | 200 | | weekly | | 333 | 06210 | blast waste | solid | 1500 | | as needed | | 333 | 06140 | empty cans | empty containers | 100 | | as needed | | 333 | 08080 | empty paint cans | solid | 200 | | as needed | | 333 | 06200
06180 | scrapings | solid | 200 | | as needed | | 333
333 | 06130 | empty cans | empty containers
solid | 100
300 | | as needed
as needed | | 333 | 06150 | rags
disposed equipment | solid | 1000 | | as needed | | 333 | 06090 | empty paint cans | solid | 500 | | as needed | | 334 | 07050 | wood/plastic shavings | solid | 500 | | continous | | 334 | 07060 | floor scrap | solid | 200 | | daily | | 334 | 07110 | other metal waste | metal | 500 | | 44.17 | | 334 | 06950 | enamel residue | solid | 100 | | intermittent | | 334 | 07250 | miscellaneous solid waste | metal | 500 | | daily | | 334 | 07140 | scrap metal | metal | 500 |) | dailý | | 334 | 07160 | fluorescent light tubes | solid | 1000 | | as needed | | 334 | 07120 | used filters | solid | | 2 . | as needed | | 334 | 07130 | metal and silica waste | solid | 500 | כ | intermittent | | 335 | 07040 | fire extinguisher chemicals | aqueous | 200 | gal/yr | as needed | | 373 | 11640 | sump sludge | solid | | lbs/yr | | | 439 | 00070 | kimwipes and rags | solid | 200 | | as needed | | 439 | 00110 | empty cans and containers | empty containers | 100 | | as needed | | 439 | 00060 | metal chips | metal | 500 | J | daily | | | • | | | | • • • • • • • | · · · · · · · · · · · · · · · · · · | | | | | (1900) | | | |-----------------|--------------|---|------------------|-----------------------------|---| | BUILDING
NO. | WASTE
NO. | WASTE NAME | WASTE TYPE | QUANTITY
GENERATED UNITS | GENERATION
FREQUENCY | | 439 | 00090 | kimimaa | solid | 200 lbs/yr | as naadad | | 440 |
00140 | kimwipes
aluminum and sst chips | metal | 500 | as riceded | | 440 | 00140 | kimwipes and rags | solid | 500 | as needed | | 440 | 00160 | | empty containers | 100 | as needed | | 440 | 01390 | empty containers
kimwipes and rags | solid | 500 | as necuca | | 440 | 00200 | kimwipes and rags | solid | 500 | as needed | | 441 | 00220 | toner . | empty containers | 100 | as needed | | 442 | 00260 | respirator cartridges | solid , | 100 | as necuca | | 442 | 00250 | defective HEPA filters | solid | 50 | as appropriate | | 445 | 15340 | trash | solid | 500 | continuous | | 445 | 15280 | trash | solid | 500 | continuous | | 445 | 15260 | carbon dust | solid | 20800 | continuous | | 445 | 15290 | steel shavings | metal | 5000 | continuous | | 445 | 15270 | carbon scraps | solid | 10000 | continuous | | 445 | 15300 | steel scraps | metal | 5000 | continuous | | 449 | 11070 | rags | organic | 200 | Continuous | | 449 | 11060 | empty paint cans and containers | empty containers | 10 | | | 449 | 11090 | miscellaneous trash | solid | 660 | | | 454 | 11890 | sump sludge | solid | 800 | intermittent | | 457 | 11860 | cumo eludas | solid | 200 | intermittent | | 460 | 00910 | used kimwipes and floor dry | solid | 0 | as needed | | 460 | 00940 | used kinwipes | solid | 302 | as needed | | 460 | 23630 | hiium dilaan aanaan | solid | 2 | once/6 mon | | 460 | 00600 | used kimwipes and rags
bijur filter screen | solid | 200 | as needed | | 460 | 23770 | hijur filter screen | solid | 200 | once/6 mon | | 460 | 00770 | used oil filters | solid | 70 | as needed | | 460 | 23690 | air filter | solid | ž | once/6 mon | | 460 | 00880 | metal chips | metal | . 0 | to be determined | | 460 | 01000 | used kimwipes | solid | 55 | as needed | | 460 | 23710 | bijur filter screen | solid | 2 | once/6 mon | | 460 | 00370 | used oil filters | solid | 20 | 4 per year | | 460 | 01080 | kimuines | solid | 150 | as needed | | 460 | 00840 | used kimwipes and floor dry | solid | 0 . | as needed | | 460 | 01250 | kimwipes and rags | solid | 165 ′ | as needed | | 460 | 23800 | bijur filter screen | solid | | | | 460 | 00460 | used kimwipes and rags (vap) | solid | 280 | as needed | | 460 | 01310 | kimwipes | solid | 50 | as needed | | 460 | 23680 | hydraulic intake filter | solid | 2 | once/6 mon | | 460 | 00640 | kimwipes and rags | solid | 110 | | | 460 | 23850 | air inlet filter | solid | • | once/6 mon | | 460 | 00810 | metal chips | metal | 0 | to be determined | | 460 | 01090 | empty paint cans | empty containers | 100 | | | 460 | 23700 | bijur filter screen | solid | 2 | once/6 mon | | 460 | 00930 | used filters | solid | 1800 | to be determined | | 460 | 01360 | kimwipes and floor dry | solid | 20 | as needed | | 460 | 23660 | hydraulic system filter | solid | 2 | once/6 mon | | 460 | 01060 | discarded containers | empty containers | 100 | intermittent | | 460 | 00890 | used kimwipes | solid | 0 | as needed | | 460 | 01050 | metal chips | metal | 300 | to be determined | | 460 | 01200 | empty chem. and solvent containers | empty containers | 100 | intermittent | | 460 | 01230 | kimwipes w/Freon | solid | 165 | as needed | | 460 | 00710 | kimwipes, gloves and gauze | solid | 0 | as needed | | 460 | 00710 | used kimwipes, gloves and gauze | solid | 580 | as needed | | 460 | 00490 | used kimwipes and gloves | solid | 110 | as needed | | 460 | 00950 | used kimwipes and floor dry | solid | , 110 | as needed | | 460 | 01140 | kimwipes and rags | solid | 165 | as needed | | 460 | 00570 | nuocure | solid | 100 | | | 460 | 00750 | metal chips | metal | 0 | to be determined | | 460 | 23780 | bijur filter screen | solid | | | | 460 | 00380 | used kimwipes and gauze | solid | 150 | as needed | | 460 | 01280 | kimwipes and floor dry | solid | 40 | as needed | | | | • | | | • | 3) Table I Solid Waste Stream to Landfill (1986) | | | | (1986) | | | • | |-----------------|----------------|---|---|-------------|--------|---------------------| | BULLDING | WASTE | | | QUANTITY | | GENERATION | | BUILDING
NO. | NO. | WASTE NAME | WASTE TYPE | | | | | | | WASIL MANE | WHOIL 1112 | | | | | | | | | | | | | 460 | 00820 | used kimwipes | solid | 0 | lbs/yr | as needed | | 460 | 00830 | used oil filters | solid | 0 | • • | as needed | | 460 | 01110 | empty containers | empty containers | 100 | | intermittent | | 460 · | 01100 | kimwipes and rags | solid | 165 | | as needed | | 460 | 00450 | used kimwipes and rags (ult) | solid | 280 | | as needed | | 460 | 01270 | kimwipes | solid | 40 | | as needed | | 460 | 23650 | apron filter | solid | . 2 | | once/6 mon | | 460 | 23790 | bijur filter screen | solid | | | once 6/mon | | 460 | 01240 | empty containers | empty containers | 100 | | as needed | | 460 | 09000 | used oil filters | solid | 0 | | to be determined | | 460 | 23640 | turret res. filter | solid | 2 | | once/6 mon | | 460 | 23750 | inline coolant filter | solid | 2 | | once/6 mon | | 460 | 01190 | kimwipes | solid | 100 | | as needed | | 460 | 01340 | kimwipes and rags | solid | 60 | | as needed | | 460 | 01170 | sludge | solid | 1200 | | to be determined | | 460 | 01120 | kimwipes and rags | solid | 165 | | as needed | | 460 | 00630 | film packs | solid | 48 | | • | | 460 | 01110 | empty containers | empty containers | 100 | | intermittent | | 460 | 23740 | rough inline filter | solid | 2 | | once/6 mon | | 460 | 23720 | oil filter | solid | | | once/6 mon | | 460 | 01070 | used kimwipes and floor dry | solid | 48
24000 | | as needed | | 460 | 00760 | used kimwipes | solid | | | as needed | | 460
460 | 01320
01180 | kimwipes | solid | 200
2000 | | as needed | | 460 | 00780 | used oil filters
used kimwipes and floor dry | solid
solid | 350 | | weekly
as needed | | 460 | 00780 | metal chips | metal | 40 | | as needed | | 460 | 01010 | used oil filters | solid | 15 | | as needed | | 551 | 06320 | metal cuttings | metal | 300 | | as needed | | 551 | 06310 | spray paint cans | empty containers | 100 | | | | 551 | 06300 | kimwipes and degreasing residue | solid | 300 | | | | 560 | 11810 | sump studge | solid | 200 | | 1 to 2 years | | 563 | 20580 | sump sludge | solid | 200 | | intermittent | | 662 | 04040 | used filters | solid | 20 | | intermittnat | | 662 | 04000 | kimwipes | solid | 200 | | continuous | | 662 | 04030 | broken parts | solid | 100 | | as occurs | | 664 | 17500 | empty containers | empty containers | 100 | | dajily | | 664 | 17510 | used rags | solid | 200 | | daily | | 664 | 17590 | solid waste | solid | 500 | | continuous | | 701 | 17620 | solid waste | solid | 200 | | daily | | 705 | 20280 | kimwipes | solid | 1 | | as needed | | 705 | 20240 | polishing pads | solid | 2 | | as needed | | 705 | 20300 | metal and glass scraps | solid | 100 | | daily | | 705
705 | 20250
20620 | kimwipes | solid | 3 |) | as needed | | 705
705 | 20060 | dumpster
kimwipes | solid | 20 | , | as needed | | 705
705 | 20310 | kimwipes
office trash | solid
solid | 1000 | | | | 705
705 | 20410 | sump studge | solid | 20 | | daily
continuous | | 708 | 10650 | HEPA filters | solid | 200 | | PMO schedule | | 709 | 11700 | sump studge | solid | 200 | | varies | | 711 | 20530 | sump studge | solid | 200 | | varies | | 712 | 20590 | sump studge | solid | 200 | | varies | | 713 | 20600 | sump studge | solid | 200 | | varies | | 732 | 15020 | filters | solid | 300 | | once per month | | 750 | 09100 | empty toner/developer containers | empty containers | 3 | | intermittent | | 750 | 09020 | empty fixer/developer containers | empty containers | 100 |) | as required | | 750 | 09110 | kimwipes | solid | 100 | 3 | intermittent | | 750 | 09070 | microfilm wrapper | solid | 100 |) | continuous | | 750 | 09060 | empty containers | empty containers | 100 | | intermittent | | 750 | 09090 | kimwipes | solid | 100 | | intermittent | | 770 | 22570 | rags | solid | 369 | | occasionally | | 770 | 22650 | combustibles | solid | 4700 | כ | daily | | • • • • • • • • | | • | • | | • • | ••••••• | Table I · Solid Waste Stream to Landfill (1986) | | | | (1,20) | | | | |-----------------|----------------|---|------------------|-------------------------|-------|---------------------------| | BUILDING
NO. | WASTE
NO. | WASTE NAME | WASTE TYPE | QUANTITY
GENERATED (| UNITS | GENERATION FREQUENCY | | | | | | | | | | 770 | 22640 | metal chips/scraps | metal . | 3276 U | bs/vr | biweekly | | 771 | 22250 | empty containers & surgical gloves | | 5000 | ,,. | every 2 weeks | | 771 | 22470 | plastic scraps | solid | 2900 | | daily | | 771 | 22450 | metal chips | metal | 3275 | | weekly | | 771 | 22460 | combustibles | solid | 5000 | | daily | | 776 | 12020 | wood & plastic chips/dust | solid | 10400 | | weekly (200 lbs./wk) | | 776 | 12010 | wood & plastic chips/dust
empty containers | empty containers | 100 | | occasionally | | 776 | 12030 | soiled kimwipes | solid | 2080 | | weekly (40 lbs/wk) | | 776 | 12040 | empty containers | empty containers | 2080 | | weekly (40 lbs/wk) | | 778 | 15040 | trash in canisters | solid | 800 | | continuous | | 778 | 15210 | sanitary trash | solid | 500 | | continuous | | 778 | 15050 | metal/wood shavings | solid | 2000 | | continuous | | 778 | 15060 | sanitary trash | solid | 500 | | continuous | | 778 | 15090 | sanitary trash | solid | 500 | | continuous | | 778 | 15210 | metal/wood shavings | solid | 2000 | | continuous | | 778 | 15140 | trash | solid | 1000 | | continuous | | 778 | 15310 | sanitary trash | solid | 500 | | continuous | | 779 | 19050 | sanitary trash | solid | 1300 | | continuous | | 779 | 15480 | trash | solid | 1000 | | continuous | | 779 | 15400 | kimwipes | solid | 480 | | periodically | | 779 |
19060 | metal shavings/fines | metal | 300 | | continuous | | 779 | 15730 | water chiller filters | solid | 10 | | monthly | | 779 | 15460 | plastics grindings | organic | | al/yr | continuous | | 779 | 19200 | machine fines | metal | 300 l | bs/yr | continuous | | 779 | 15410 | mixed trash | solid | 500 | | continuous | | 779 | 19190 | sanitary trash | solid | 500 | | continuous | | 779 | 15450 | grindings metal | metal | 1000 | | continuous | | 783 | 11780 | sump sludge | solid | 200 | | intermittent [.] | | 850 | 04940 | toner and dispersant bottles | empty containers | 5 | | intermittant | | 865 | 04240 | stainless steel grinding paper | solid | 6 | | per year | | 865 | 04280 | mold compound | solid | 50 | | | | 865 | 04290 | photography lab solid wastes | solid | 240 | | | | 865 | 04330 | metal scraps | metal | 260 | | | | 881 | 04670 | aerosol, paint and thinner cans | empty containers | 200 | | | | 881 | 04620 | dirty kimwipes | solid | 200 | | as needed | | 881 | 04710 | uncontaminated solid waste | solid | 5000 | | | | 881 | 04610 | other metal chips | metal | 600 | | | | 881 | 05070 | rags and kimwipes | solid | 100 | | | | 885 | 05110 | rags | solid | 100 | | | | 886 | 03190 | copy machine waste | solid | 40 | | | | 910 | 06360 | diatomaceous earth | solid - | 54750 | | weekly/monthly | | 910 | 07560 | wastewater sludge | solid | . 0 | • | intermittant | | 966 | 06840 | empty containers | empty containers | . 100 | | intermittent | | 980 | 06550 | kimwipes | solid | 1500 | | daily | | 980 | 06980 | sawdust soaked with oil seepage | solid | 900 | | daily | | 980 | 06590 | metal scrap | metal | 5000 | | daily | | 980 | 06530 | metal scrap | metal | 2000 | | daily | | 980 | 06520 | fiberglass resins and catalysts | solid | 1000 | | intermittent | | 980
980 | 06500
06570 | metal scraps | metal | 5000 | | daily | | | | oily rags | solid | 480
1480 | | daily | | 980
980 | 06510
06490 | rags with mineral spirits | solid | 1480 | | daily | | 980
980 | | empty containers | empty containers | 100 | | intermittent | | 960
991 | 06580
07510 | oily rags | solid | 480
100 | | daily | | 991
991 | 07510 | toner & dispersant containers | empty containers | 100 | | monthly | | 791
1750 | 06010 | empty paint containers | empty containers | 100 | | maneh I | | 1750
1750 | 06040 | empty toner/dispersant containers kimwipes | empty containers | 100
100 | | monthly
as needed | | 1750
1750 | 06020 | soiled kimwipes | solid
solid | 100 | | as needed
as needed | | | | | | | | us necueu | | | | | | | | | carbon tetrachloride. A summary of the hazardous waste streams is shown in Table II. #### 2.3.4 Volumes of Waste The landfill began operation in 1968, and for the following ten years received approximately 20 cubic yards of compacted waste per work day. After that time, the daily volume the landfill received increased to approximately 30 cubic yards of compacted waste per work day. Using available topographical maps, reported daily disposal rates and geotechnical reports (Woodward-Clevenger, 1974), the volume of the landfill was calculated at three stages of the landfill's history. In 1974, the landfill occupied an area of approximately 300,000 square feet. Using the Woodward-Clevenger report and the average end area method, the volume occupied by the landfill was calculated to be about 95,000 cubic yards. Of this total, the cover material occupied 30,000 cubic yards. The remaining 65,000 cubic yards consisted of compacted waste intermixed with the daily cover material placed during disposal. Table II Hazardous Waste Stream to Landfill (1986) | BUILDING
NO. | WASTE
NO. | WASTE NAME | WASTE TYPE | QUANTITY
GENERATED | UNITS | GENERATION
FREQUENCY | |-----------------|----------------|-------------------------------------|---|-----------------------|--------|-------------------------| | | | WAGTE HANG | *************************************** | | | | | | | • | | | | | | 111 | | film packs and positives | solid | | lbs/yr | | | 123 | 03100 | broken badges | solid | 200 | | as occurs | | 123 | 03120 | waste vials | solid | 100 | | batch | | 123 | 02930 | waste resin | solid | 5 | | batch | | 123 | 03160 | waste resin | solid | 100 | | as required | | 125 | 02560 | filters | solid | 5 | | Change once/year | | 125
125 | 02640
02580 | silicone oil filters | solid | 5 | | | | | | kimwipes | solid | 100 | | continuous | | 334
367 | 07070
06930 | | solid | 200
100 | | as appropriate | | 377 | 09960 | empty cans, bags and containers | empty containers | | | as needed | | 440 | 01500 | oil filters | solid | 5
500 | | pmo schedule | | 440 | 00120 | kimwipes and rags from paint booth | | 600 | | | | 440 | 01460 | composite kimwipe drum | solid | | | | | 440 | 01410 | foam trimmings | solid | 200 | | | | 440 | 00390 | empty paint cans | empty containers | 100 | | | | 440 | 00390 | metal chip dumpster | solid . | 2000 | | | | 440 | 01470 | R-compound | organic | 2640 | | | | 440 | 01470 | kimwipes and rags | solid | 500 | | | | 440 | | kimwipes and rags | solid | 500 | | | | 440 | 01440
01420 | kimwipes and rags | solid | 500 | | | | 443 | | paint filters | solid | 300 | | | | 443
444 | 00320
14120 | contaminated rags | solid | 200 | | as needed | | 444 | 11920 | sst, iron metal chips | metal | 1200 | | continuous | | 453 | 11130 | sump sludge | solid | 200 | | varies | | 460 | 23520 | paper towels | solid | 2 | | intermittent | | 460 | 23560 | metal chips | metal | 0 | | | | 460 | 01640 | metal chips
air filters | metal | . 0 | | | | 460 | 23540 | metal chips | solid | 0 | | | | 460 | 23610 | metal chips | metal | 0 | | | | 460 | 02350 | | metal | _ | | | | 460 | 02330 | metal chips | metal | 0 | | | | 460 | 23620 | metal chips
metal chips | metal | 0 | | | | 460 | 02300 | | metal | 0 | | | | 460 | 01750 | metal chips
metal chip composite | metal | 0
100000 | | | | 460 | 23510 | metal chips | metal | 100000 | | | | 460 | 02290 | | metal | • | | | | 460 | 02480 | metal chips | metal | 0 | | | | 460 | 02440 | metal chips | metal | 0 | | | | 460 | 01650 | metal chips
water filters | metal | 0 | | | | 460 | 01830 | water filters (x-ray) | solid | 50 | | | | 460 | 02280 | metal chips | solid | 0 | | | | 460 | 01600 | compressor filters | metal
solid | 40 | | | | 460 | 23580 | metal chips | metal | 40 | | | | 460 | 02270 | metal chips | | 0 | | | | 460 | 02370 | metal chips | metal | 0 | | | | 460 | 23550 | metal chips | metal | 0 | | | | 460 | 01370 | film packs | metal | _ | | | | 460 | 01370 | metal chips | solid | 30 | | | | | | metat cirips | metal | 0 | | | Table II Hazardous Waste Stream to Landfill (1986) | BUILDING
NO. | WASTE
NO. | WASTE NAME | WASTE TYPE | QUANTITY
GENERATED UNIT | GENERATION
IS FREQUENCY | |-----------------|----------------|------------------------------------|------------------|----------------------------|----------------------------| | | | | | | | | 460 | 02410 | metal chips | metal | 0 | | | 460 | 02500 | metal chips | metal | Ō. | | | 460 | 23570 | metal chips | metal | 0 | • | | 460 | 02340 | metal chips | metal | 0 | | | 460 | 00590 | mercury light bulbs | solid | - 5 | | | 460 | 02320 | metal chips | metal | 0 | | | 460 | 02400 | metal chips | metal | 0 | | | 460 | 23590 | metal chips | metal | 0 | | | 460 | 01780 | empty containers | empty containers | 100 | | | 460 | 02380 | metal chips | metal | 0 | | | 460 | 02330 | metal chips | metal | 0 | | | 460 | 01580 | kimwipes and rags | solid | 165 | | | 460 | 02360 | metal chips | metal | 0 | | | 460 | 02450 | metal chips | metal | Ō | | | 460 | 23600 | metal chips | metal | 0 | | | 460 | 23530 | metal chips | metal | 0 | | | 460 | 02310 | metal chips | metal | 0 | | | 460 | 23470 | metal chips | metal | 0 | | | 460 | 02430 | metal chips | metal | 0 | | | 460 | 02490 | metal chips | metal | 0 | | | 460 | 02420 | metal chips | metal | .0 | | | 528 | 15360 | kimwipes | solid . | 10 | periodically | | 549 | 07300 | empty containers | empty containers | 100 | as needed | | 562 | 09840 | paper towels with oil | solid | 20 | varies | | 668 | 09570 | rags with methyl alcohol | solid | 50 | intermittant | | 705 | 20180 | kimwipes | solid | 15 | as needed | | 708 | 10690 | rags w/freon and trichloroethane | solid | 200 | | | 727 | 09520 | paper towels with oil/freon TF | solid | 100 | intermittant | | 771 | 22010 | deionizer exchange resin column | solid | 5 | yearly | | 771 | 22230 | bottles, cartons, gloves, kimwipes | solid | 15000 | continuous | | 771 | 22210 | liquid chemical containers | solid | 4000 | continuous | | 775 | 22030 | trash paper | solid | 200 | none | | 776 | 12120 | soiled kimwipes | solid . | 365 | daily | | 776 | 12130 | empty containers | empty containers | 365 | daily | | 776 | 12100 | empty containers | empty containers | 365 | daily | | 776 | 12000 | soiled kimwipes | solid | 1200 | once per day | | 776 | 12180 | soiled kimwipes | solid | 4000 | daily | | 776
770 | 12090 | soiled kimwipes | solid | 365 | daily | | 779
700 | 19730 | metal chips | metal | 10000 | 2/week | | 780 | 09590 | rags with trichloroethane | solid | 50 | infrequent | | 780
881 | 09580 | empty paint cans | solid | 50 | infrequent | | 881 | 04660
04760 | metal and plastic chips | solid | 10000 | • | | | 04760 | dirty kimwipes | solid | 100 | | | 881
886 | 03240 | waste resin | solid | 4 | continuous | | | | kimwipes | solid | 10 | | | 886
910 | 03200
06340 | chemicals in cabinet | organic | 50 | infrequent | | 910
991 | 07490 | filter backwash | aqueous | 100000 | weekly | | 771 | 0/490 | reject rings | solid | 1880 | weekly | As disposal continued after 1974, material was placed in the collection trenches and the face of the material was advanced, eventually filling in the west pond area. The volume of the landfill in 1986 was calculated by using topographical maps and by calculating the
volume of the collection trenches. This calculation showed that approximately 160,000 cubic yards of material had been dumped between 1974 and 1986, for a total landfill volume of 255,000 cubic yards. This volume of material includes solid wastes, wastes with hazardous constituents, and soil cover material. Between 1986 and 1988, waste has reportedly been disposed at a rate of 115 cubic yards per work day. Assuming 260 work days per year for two years, approximately 60,000 cubic yards of waste material have been disposed since 1986. This waste material consists of solid waste streams. Wastes with hazardous constituents ceased to be disposed of in the landfill in November, 1986. It is estimated that daily cover volumes are about 25 percent of the volume of material disposed. The total volume of material in the landfill at present is estimated to be approximately 330,000 cubic yards. Date: July 1, 1988 Revision No.: 1 # 2.3.5 Spray Fields and Collection Systems After construction of the two retention ponds in 1973, surface runoff and ground water and leachate collected in the systems discharged to these ponds. There is no documentation of the flow of waters collected by the collection systems. When the landfill was expanded in 1981, the leachate collection system and west pond were buried. Until January of 1974, the water collected in the ponds was pumped to the solar evaporation ponds. At that time it became necessary to dispose of the water elsewhere, and the water was diverted to a manhole northwest of Building 990. This line discharged to Pond B-2. By September 1975, the water was no longer pumped to the manhole but was sprayed on sprayfields adjacent to the landfill. One of these sprayfields was a 3- to 3 1/2-acre plot, located approximately 1,000 feet northwest of the east pond, as shown on Figure 2. This north sprayfield was used for spraying water collected in the west pond. Initially the spray line ran approximately north-south; however, in about 1975 the line was moved to an east-west direction as shown on Figure 2. C07890010526 Date: July 1, 1988 Revision No.: 1 Two other sprayfields were located along the banks of the east pond, as shown on Figure 2. These sprayfields were used for spray evaporation of water collected in the east pond. Prior to spraying activities, the water was tested to ensure that the acceptability criteria for spraying were met. Water quality testing, summarized in Appendix 6, indicates leachate collection and some organic constituents in the west pond waters. East pond water showed no impacts from the landfill. Guidelines for acceptability for spraying were issued by the Environmental Control and Analysis Group of Rockwell, to ensure that water sprayed from the pond would not cause erosion or other harm to the environment in, around or downstream of the site. These guidelines included weekly water grab samples and procedures for obtaining authorization for spraying. Authorization was obtained from the Manager of Environmental Analysis and Control's office. The weekly grab samples were analyzed for gross alpha, gross beta, gamma emitting isotopes and tritium. Control guides were established for each parameter. Date: July 1, 1988 Revision No.: 1 Spraying on the north sprayfield ceased in to 1981. #### 2.3.6 Monitoring Activities After the discovery in 1973 of tritium in the landfill drainage, over 50 monitoring wells were installed in the landfill. These wells, leachate generated by the landfill, and ground water intercepted by the installed system were monitored and analyzed for tritium. It was found that the tritium concentrations within the landfill decreased to the east. The intercepted ground water, when analyzed in 1974, was found to have tritium concentrations in the range of background values. The surface water collected in the western pond was monitored from 1974 until removal of the pond in 1981. The tritium concentration measured steadily decreased with time, and were within measured background values when the pond was removed. Monitoring of tritium levels in the surface waters and ground water in the landfill area ceased in 1981. Date: July 1, 1988 Revision No.: 1 ## 2.4 Current Landfill Operations ### 2.4.1 Disposal Policies and Procedures The solid waste management plan established in 1977 is still the basis for disposal policies at the landfill. additionally, in November 1986, the waste streams identified as hazardous in the 1986 studies (Weston, 1986a, b, c and d) were no longer disposed of in the landfill. The disposal procedures outlined in Section 2.3.2 are the procedures used for landfill disposal at this time. The solid waste streams designated for the landfill are typically placed in trash cans, drums, dumpsters or plastic bags. The waste containers are collected throughout the day, and are then disposed of as discussed in Section 2.3.2. In October of 1988, an independent off-site contractor will begin removal and disposal of portions of the wastes currently going to the landfill. The amount of wastes removed and disposed of off-site will increase over time. By June 1, 1989, all currently landfilled wastes will be disposed of off-site and the existing landfill will become inactive. Date: July 1, 1988 Revision No.: 1 ## 2.4.2 Disposal of Solid and Hazardous Wastes The studies performed in 1986 identified 338 waste streams being disposed of in the landfill (Weston, 1986a, b, c and d). Of these waste streams, 97 reportedly contained hazardous constituents or hazardous waste. In 1987, recommendations were made which outlined where the waste streams identified at the Rocky Flats Plant should be disposed (Weston, 1987). The recommendations for the landfill identified 144 waste streams to continue to be disposed of in the landfill. These waste streams were solid waste with no hazardous constituents, as shown in Table III. In the fall of 1986, wastes with hazardous constituents ceased to be disposed of in the landfill. This policy was implemented through the tightening of administrative procedures and the implementation of the findings of the Waste Stream Identification and Characterization Reports (Weston, 1986a, b, c, d, 1987). Table III Recommended Solid Waste Stream to Landfill (1987) | Bldg. | Waste | | Qua | nt. | Generation | |-------|-------|-------------------------------------|---------|---------|------------------| | No. | No. | Waste Name | Ge | n. | Frequency | | | | | | | • • | | 111 | 06610 | Toner and dispersant containers | 3 | lbs/yr. | 2 per month | | 111 | 06640 | Empty toner containers | 10 | H + | 3 per week | | 111 | 06650 | Demineralizer system filters | 24 | | 1 per month | | 111 | 06670 | Empty ink cans | 12 | | 3-4 per month | | 111 | 06680 | Empty solvent containers | 3 | • | 1 per month | | 111 | 06700 | Film packs | 50 | | intermittent | | 111 | 06740 | Empty chemical containers | 100 | | as needed | | 111 | 06780 | Developer and fixer containers | 10 | • | as needed | | 111 | 06820 | Empty developer and fixer container | 's 100 | | as needed | | 121 | 04810 | Solid waste | . 100 | | intermittent | | 123 | 03000 | Empty vials | 100 | | batch | | 123 | 03120 | Waste vials | 100 | | batch | | 124 | 00010 | Microstrainer backwash | 180000 | gal/yr. | summer operation | | 124 | 00020 | Clarifier underflow | 1500000 | н | continuous | | 124 | 00030 | Sand filter backwash | 1500000 | 11 | intermittent | | 124 | 01660 | Dried Sludge | 5000 | lbs/yr. | once/ 6 months | | 124 | 01910 | Settling basin sludge | 500000 | gal/yr. | batch | | 130 | 07350 | Copy machine toner | 100 | lbs/yr. | as needed | | 130 | 07360 | Packing materials | 100 | н | intermittent | | 130 | 07380 | Water conditioning filters | 5 | | twice per month | | 130 | 07400 | Rejected bags | 200 | | as needed | | 130 | 07430 | Floor sweepings | 100 | | as needed | | 331 | 06430 | Oil filters and used parts | 500 | | daily | | 331 | 06440 | Paint and body-filler cans | 200 | | as needed | | 333 | 06080 | Empty paint cans | 200 | | as needed | | 333 | 06090 | Empty paint cans | 500 | | as needed | | 333 | 06110 | Filters | 200 | | weekly | | 333 | 06140 | Empty cans | 100 | | as needed | | 333 | 06180 | Empty cans | 100 | | as needed | | 333 | 06200 | Scrapings | 200 | | as needed | | 333 | 06210 | Blast waste | 1500 | | as needed | | 333 | 06220 | Sawdust | .100 | | as needed | | 333 | 06230 | Shavings | 100 | | daily | | 334 | 07050 | Wood/plastic shavings | 500 | | continuous | | 334 | 07060 | Floor scrap | 200 | | daily | | 334 | 07070 | Mineral and asbestos dust | 200 | | as appropriate | | 334 | 07130 | Metal and silica waste | 500 | | intermittent | | 334 | 07250 | Miscellaneous solid waste | 500 | | daily | | 335 | 07040 | Fire extinguisher chemicals | 200 | gal/yr. | as needed | | 367 | 06930 | Empty cans, bags and containers | 100 | lbs/yr. | as needed | | 439 | 00110 | Empty cans and containers | 100 | ш | as needed | | 440 | 01440 | Kimwipes and rags | 500 | | none | | 440 | 01410 | Empty paint cans | 100 | | as needed | Date: June 1, 1988 Revision: 0 # Table III - continued Recommended Solid Waste Stream to Landfill (1987) | Bldg. | Waste | | Qua | nt. | Generation | |-------|-------|------------------------------------|-------|---------|----------------------| | No. | No. | Waste Name | Gei | n. | Frequency | | | | | | | | | 440 | 01420 | Paint filters | 300 | lbs/yr. | as needed | | 440 | 00160 | Empty containers | 100 | 14 | as needed | | 440 | 00170 | R-compound | 2640 | gal/yr. | as needed | | 440 | 01460 | Foam trimmings | 200 | lbs/yr. | as needed | | 442 | 00250 | Defective HEPA filters | 50 | ti | as appropriate | | 442 | 00260 | Respirator cartridges | 100 | | as needed | | 445 | 15260 | Carbon dust | 20800 | | continuous | | 445 | 15270 | Carbon scraps | 10000 | | continuous | | 445 | 15280 | Trash | 500 | | continuous | | 445 | 15340 | Trash | 500 | lbs/yr. | continuous | | 445 | | Steel shavings | 5000 | 11 | continuous | | 445 | 15300 | Steel scraps |
5000 | | continuous | | 449 | 11060 | Empty paint cans and containers | 10 | | intermittent | | 449 | 11090 | Miscellaneous trash | 660 | | daily | | 453 | 11130 | Paper towels | 0 | | intermittent | | 457 | 11860 | Sump sludge | 200 | | intermittent | | 460 | 00370 | Used oil filters | 20 | | 4 per year | | 460 | 00570 | Nuoclure | 100 | | continuous | | 460 | 00630 | Film packs | 48 | | intermittent | | 460 | 01370 | Film packs | 30 | | intermittent | | 460 | 23680 | Hydraulic intake filter | 2 | | once/ 6 month | | 460 | 23690 | Air filter | 2 | | once/year | | 460 | 00930 | Argon filters | 1800 | | once/year | | 460 | 01640 | Air filters | 25 | | once/year | | 460 | 23810 | Coolant filter | 100 | gal/yr. | on preventive maint. | | 460 | 23820 | Coolant filter | 100 | tl | p.m.o. | | 460 | 01060 | Discarded containers | 100 | lbs/yr. | intermittent | | 460 | 01090 | Empty paint cans | 100 | 11 | as needed | | 460 | 01110 | Empty containers | 100 | | intermittent | | 460 | 01130 | Empty containers | 100 | | intermittent | | 460 | 01240 | Empty containers | 100 | | as needed | | 460 | 01270 | Kimwipes | 40 | | as needed | | 460 | 01280 | Kimwipes and floor dry | 40 | | as needed | | 460 | 01310 | Kimwipes | 50 | | as needed | | 460 | 01320 | Kimwipes | 200 | | as needed | | 460 | 01200 | Empty chem. and solvent containers | 100 | | intermittent | | 460 | 09060 | * * | 100 | • | intermittent | | 460 | 09070 | Microfilmwrappers | 100 | | continuous | | 549 | 07300 | Empty containers | 100 | | as needed | | 551 | 06310 | Spray paint cans | 100 | | weekly | | 551 | 06320 | Metal cuttings | 300 | | weekly | | 560 | 11810 | Sump sludge | 200 | | 1 to 2 years | | 662 | 04030 | Broken parts | 100 | | as occurs | Date: June 1, 1988 Revision: 0 # Table III - continued Recommended Solid Waste Stream to Landfill (1987) | Bldg. | Waste | | Quar | ıt. | Generation | |--------------|-------|---------------------------------------|-------|---------|----------------------| | No. | No. | Waste Name | Ger | ١. | Frequency | | | | | | | • | | 664 | 17500 | Empty containers | 100 | lbs/yr. | daily | | 664 | 17590 | Solid waste | 500 | II | continuous | | 701 | 17620 | Solid waste | 200 | | daily | | 705 | 20180 | Kimwipes | 15 | | as needed | | · 705 | 20300 | Metal and glass scraps | 100 | | daily | | 705 | 20310 | Office trash | 1000 | | daily | | 708 | 10650 | HEPA filters | 200 | | PMO schedule | | 711 | 20530 | Sump sludge | 200 | | varies | | 750 | 09020 | Empty fixer/developer containers | 100 | | as required | | 750 | 09100 | Empty toner/developer containers | 3 | | intermittent | | 750T | 06010 | Empty toner/dispersant containers | 100 | | monthly | | 771 | 22210 | liquid chemical containers | 4000 | | continuous | | 771 | 22230 | Bottles, cartons, gloves, kimwipes | 15000 | | continuous - | | 771 | 22250 | Empty containers and surgical gloves | 5000 | | every 2 weeks | | 776 | 12010 | Empty containers | 100 | | occasionally | | 776 | 12040 | Empty containers | 2080 | | weekly (40lbs./week) | | 776 | 12100 | Empty containers | 365 | | ďaily | | 776 | 12130 | Empty containers | 365 | | daily | | 778 | 15040 | Trash in containers | 800 | lbs/yr. | continuous | | 778 | 15050 | Metal/wood shavings | 2000 | u | continuous | | 778 | 15060 | sanitary trash | 500 | | continuous | | 778 | 15090 | sanitary trash | 500 | | continuous | | 778 | 15120 | Metal/wood shavings | 2000 | | continuous | | 778 | 15130 | Sanitary trash | 500 | | continuous | | 778 | 15140 | Trash | 1000 | | continuous | | 778 | 15210 | Sanitary trash | 500 | | continuous | | 779 | 19080 | Batting paper filters | 50 | | PMO | | 779 | 19100 | Furnace filters | 100 | | PMO | | 779 | 19190 | Sanitary trash | 500 | • | continuous | | 779 | 19350 | Sanitary trash | 500 | | continuous | | 779 | 19630 | Furnace filters | 400 | | periodic | | 779 | 19050 | Sanitary trash | 1300 | | continuous | | 779 | 19060 | Metal shavings/fines | 300 | | continuous | | 779 | 15450 | Grindings metal | 1000 | | continuous | | 779 | 15460 | Plastic grindings | 500 | gal/yr. | continuous | | 779 | 15480 | trash | 1000 | lbs/yr. | continuous | | 779 | 19730 | metal chips | 10000 | н | 2/week | | 7 7 9 | 15410 | • | 500 | | cont i nuous | | 779 | 15730 | | 10 | | monthly | | 779 | 19200 | | 300 | | continuous | | 780 | 09580 | | 50 | | infrequent | | 850 | 04940 | , | 5 | | intermittent | | 865 | 04280 | , | 50 | | continuous | | | | · · · · · · · · · · · · · · · · · · · | | | | Date: June 1, 1988 Revision: 0 Table III - continued Recommended Solid Waste Stream to Landfill (1987) | Bldg.
No. | Waste
No. | Waste Name | Quant.
Gen. | Generation
Frequency | |--------------|--------------|---------------------------------|----------------|-------------------------| | 0/5 | 0/200 | | 2/0 11 /20 | | | 865 | 04290 | Photography lab solid wastes | 240 lbs/yr. | continuous | | 881 | 03240 | Waste resin | 4 | continuous | | 881 | 04670 | Aerosol, paint and thinner cans | 200 " | | | 881 | 04710 | Uncontaminated solid waste | 5000 | daily | | 886 | 03190 | Copy machine waste | 40 | | | 910 | 06340 | Filter backwash | 100000 gal/yr. | weekly | | 910 | 06360 | Diamataceous earth | 54750 lbs/yr. | weekly/monthly | | 966 | 06480 | Empty containers | 100 " | intermittent | | 980 | 06490 | Empty containers | 100 | intermittent | | 980 | 06520 | Fiberglas resins and catalysts | 1000 | intermittent | | 980 | 06530 | Metal scrap | 2000 | daily | | 980 | 06590 | metal scrap | 5000 | daily | | 991 | 07500 | Empty paint containers | 100 | as needed | | 991 | 07,510 | Toner and Dispersant containers | 100 | monthly | | 995 | 20620 | Dumpster | 10000 | | Date: July 1, 1988 Revision No.: 1 #### 2.4.3 Volumes of Waste At the present time, 115 cubic yards are disposed of in the landfill every work day. It is anticipated that this volume will continue through October 1988 and diminish for the remainder of the landfill life. Based on previous calculations of the landfill volume and projecting present disposal amounts, the total volume of material disposed of in the landfill when operations cease in 1989 will be 410,000 cubic yards. The actual volume will be less due to off-site disposal of some wastes beginning in October 1988. The landfill will have a surface area of approximately 765,000 square feet. #### 2.4.4 Spray Fields and Collection Systems Water collected in the east pond is routinely sprayed on the banks of the pond, immediately above the waterline. Spraying occurs on both the north and south sides. The guidelines established in 1980, including weekly water grab samples and analyses, are still in use. Analysis of weekly samples, presented in Appendix 6, continue to show no impact from the landfill on the impounded waters. Date: July 1, 1988 Revision No.: 1 Based on recent water level measurements in monitoring wells at the landfill, the ground-water and leachate collection systems do not appear functional. # 2.5 Maximum Waste Inventory Throughout the life of the landfill, the disposal technique has been to deliver waste materials to the site until midafternoon, and then spread and compact the material. The longest time waste inventory is stored prior to final disposal is approximately six hours. At the current disposal rate of 115 cubic yards per work day, the maximum inventory at any time is 115 cubic yards. # 2.6 Description of Auxiliary Equipment The equipment used in the landfilling operations consists of Caterpillar D-8 dozer, a Terrex dozer, and an International dozer. # 2.7 Final Closure Plan Summary The existing landfill has received nonhazardous solid wastes after November 28, 1986. To ensure that no RCRA hazardous Date: July 1, 1988 Revision No.: 1 wastes are sent to this landfill, source control was implemented through satellite collection, secured containers and a RCRA training program. Areas of the landfill activities after 1986 were delineated from past areas. Uses of the existing landfill will be in compliance with the Colorado Solid Waste Act Regulations. The closure plan will address the solid waste management units (SWMU) numbers 114 and 167.1 presented in Appendix 1 of the Rocky Flats Plant Part B RCRA Permit. If clean closure is not achieved for SWMU Number 203, the closure plan will also address this unit. #### 2.7.1 Closure Objectives This closure plan has been prepared to meet the performance standards of 6 CCR 1007-3, Section 265.111. The promulgated standards require a facility must be closed in a manner that: - . minimizes the need for further maintenance, and - controls, minimizes or eliminates, to the extent necessary to protect human health and the environment, post-closure escape of hazardous waste, hazardous waste constituents, leachate, contaminated rainfall, or waste decomposition Date: July 1, 1988 Revision No.: 1 products to the ground or surface waters or to the atmosphere. ## 2.7.2 Closure Plan The activities necessary to complete closure and comply with the ground-water corrective action requirements of 6 CCR 1007-3 264 Subpart F are shown on the diagram in Figure 5. The closure activities include: - analysis of north sprayfield area, - grading of the landfill, - placement of the cap, - placement of a vegetative cover, - . maintenance of the closed area, - evaluation of existing ground-water collection system, and - installation of a ground-water collection system. The quality of the ground water will be evaluated to determine if corrective action is required to meet 6 CCR 1007-3, Section 264 Subpart F. If necessary, the type of ground-water corrective action will be determined and implemented. #### 2.7.3 Closure Schedule Anticipated schedules for closure activities are presented on Figures 6 and 7. Figure 6 presents activities to be ---- DEFINED CLOSURE ACTIVITIES ON THE BASIS OF ADDITIONAL SOIL CHARACTERIZATION Date: July 1, 1988 Revision No.: 1 conducted during closure of the landfill. Figure 7 presents the schedule for activities to be completed
for final design. The site characterization and engineering studies necessary to define closure activities for the north sprayfield are anticipated to be completed prior to the end of deposition at the landfill. Preliminary acceptance of performance and closure design criteria is anticipated prior to initiating conceptual design documents. The final schedule of activities required for closure will be defined upon completion of additional site investigations and engineering studies. #### 2.7.4 Justification for Extension of Schedule The regulations of 6 CCR 1007-3, Section 265.113(a) require: "Within 90 days after receiving the final volume of hazardous wastes at a hazardous waste management unit or facility, or within 90 days after approval of the closure plan, whichever is later, the owner or operator must treat, remove from the unit or facility, or dispose of on-site, all hazardous wastes in accordance with the approved closure plan." The intent of this regulation is to avoid causing serious environmental damage due to accumulating inventory over long periods of time. In part 6 CCR 1007-3, Section 265.113(b) states that closure activities will be completed within 180 Date: July 1, 1988 Revision No.: 1 days after approval of the closure plan unless closure activities will, by necessity, take longer than 180 days to complete. If closure activities will take longer than 180 days, then steps must be taken to prevent threats to human health and the environment from the unclosed facility. The activities required to complete final closure at the present landfill will take longer than schedules required by the referenced regulations. Before the installation of the final cover and cap can begin, field studies must be completed. #### 2.7.5 Protection of Human Health and the Environment Threats to human health and the environment are prevented by the routine monitoring activities conducted at Rocky Flats and by restricted access to the facility. Specific details of the routine monitoring program are summarized in the "Annual Environmental Monitoring Report" (Rockwell, 1986b). This document is reviewed and updated on an annual basis. Brief discussions of the monitoring activities that are conducted and the security procedures at the plant are presented below. Date: July 1, 1988 Revision No.: 1 The routine environmental monitoring program includes the sampling and analysis of airborne effluents, ambient air, surface and ground water, and soil. External penetrating gamma radiation exposures are also measured using thermoluminescent dosimeters. Samples are collected from on-site, boundary and off-site locations. Particulate and tritium sampling of building exhaust systems is conducted continuously. For immediate detection of abnormal conditions, ventilation systems that service areas containing plutonium are equipped with Selective Alpha Air Monitors. These monitors trigger an alarm automatically if out-of-tolerance conditions are experienced. Particulate samples are collected from ambient air samplers operated continuously on site. The ambient air samples are analyzed for Total Long-Lived (TLL) Alpha activity or for plutonium activity. There are currently 51 of these ambient air samplers. Twenty-three are located within and adjacent to the Rocky Flats exclusion area, 14 are located along or near the plant's perimeter and 14 are located in nearby communities. The majority of the water used for plant process operations and sanitary purposes is treated and evaporated and/or Date: July 1, 1988 Revision No.: 1 reused for cooling tower makeup or steam plant use. The discharge of water off-site is minimized to the greatest extent possible. Water discharges from the Rocky Flats Plant are monitored for compliance with appropriate CDH standards and EPA National Pollutant Discharge Elimination System (NPDES) permit limitations. Surface runoff from precipitation is collected in surface water control ponds and discharged off site after monitoring. Routine water monitoring is conducted for two downstream reservoirs and for drinking water sources in nine communities. Groundwater monitoring was conducted during 1987 at approximately 160 ground-water sampling locations. Soil samples are routinely collected on an annual basis from 40 sites located on radii from Rocky Flats at distances of 1.6 and 3.2 kilometers (one and two miles). The purpose of this soil sampling is to determine if there are any changes in plutonium concentrations in the soil around the plant. When higher concentrations than usual are found in any of the routine monitoring activities or when out-of-compliance conditions are identified, the cause of the problem is investigated. If the present landfill facility is found to Date: July 1, 1988 Revision No.: 1 be the cause of an out-of-compliance condition, then this closure plan will be revised within 30 days. Access to the landfill is limited by: - a three-strand barbed wire cattle fence surrounding the facility (Figure 1) posted to identify the land as a government reservation/ restricted area, - guards patrolling the controlled area and the PSZ 24 hours per day, and - surveillance by security cameras 24 hours per day. The existing fences and gates are operated and maintained by the U.S. Department of Energy. The monitoring and security measures outlined above are designed to protect human health and the environment by threats posed by the plant as a whole. In addition, they protect human health and the environment from threats posed by the present landfill. Additionally, the majority of the landfill has an interim three-foot soil cover. This cover minimizes potential direct contact and wind dispersal of contamination material and reduces contamination of runoff. Surface runoff, sediments and ground water are collected by the east pond. Ground water at the landfill is monitored quarterly by monitoring wells. These specific measures at CO7890010526 Date: July 1, 1988 Revision No.: 1 the landfill further protect human health and the environment from threats posed by the landfill. #### 2.7.6 Final Design Activities required to complete final design of the landfill closure will include the following: - . Characterization of soil contamination at the north sprayfield; - . Preparation of topographic maps; - Delineation of landfilled material, exclusive of interim cover; - Conduct engineering studies to evaluate horizontal and vertical gradients and ground-water flow at the landfill and geologic conditions influencing flow; - Conduct engineering studies of potential borrow sites for cover construction material; - Investigation discharge lines for the existing ground-water collection and diversion system; and - Prepare design drawings, specifications, quality control and quality assurance plan, and site specific health and safety plan. Activities for final design will be completed prior to July 1989. The general scope of work of these activities is presented below. C07890010526 Date: July 1, 1988 Revision No.: 1 Characterization of the north sprayfield contamination will entail sampling of soil. Samples will be submitted for analysis of potential contaminants. Additional discussion of site characterization is presented in Section 3.1. The topography of the landfill prior to closure activities will be mapped. The topographic mapping will be done at a scale of one inch equals 100 feet or less, with minimum two-foot contour intervals. The prepared maps will be utilized for final design drawings. To assure that the final cover extends over all landfilled materials, a geophysical study will be conducted to evaluate the extent of the interim cover, landfilled materials and limits of the 1974 trench excavation. The study will use surficial geophysical techniques to delineate subsurface characteristics. Geophysical interpretations will be correlated to exploratory borings. The scope of the investigation will initially be to confirm the limits of the landfill presented herein. Should the study indicate the landfill extent to be significantly different from those presented, the scope of the study will be extended to redefine the limits of the landfill. CO7890010526 Date: July 1, 1988 Revision No.: 1 The hydrogeologic characterization presented in Appendix 6, is limited to available wells to determine the ground-water elevation and vertical and horizontal flow directions. Existing monitoring wells installed indicate a vertical component within the ground-water flow; however, the Water levels within the main information is limited. portion of the landfill are unknown at present. To evaluate these conditions and to determine what measures could be implemented to remove or reduce ground-water flows within the landfill, additional studies will be conducted. study will entail installation of four to six nested monitoring well series. The nested series will have two to four wells installed in relatively close proximity with screen intervals placed at different elevations. geologic characteristics of the soil and bedrock will be logged at each nested well location. Within the landfill, two to three monitoring wells will be installed with screen intervals at or near the bottom of the landfilled material. At the downstream toe of the landfill, subsurface conditions will be evaluated by drilling exploratory borings and completing selected borings as monitoring wells. purpose of the borings will be to evaluate the overall effectiveness of the proposed ground-water collection system discussed in Section 5.3.4. The studies will be directed to CO7890010526 Date: Revision No.: develop sufficient information to evaluate alternatives for dewatering the landfill, interception of ground-water flows from the landfill and the potential impacts of the landfill to ground-water quality. Established monitoring wells will be sampled for ground-water quality as part of the quarterly monitoring program for the landfill. July 1, 1988 An investigation will be conducted
of potential borrow areas for suitable material for use in final cover construction. The investigation will delineate sufficient borrow volume for regrading of the landfill, compacted soil layer and topsoil within the final cover and evaluate potential onsite sources for sand and riprap, if present. investigation will entail drilling between ten to 20 exploratory borings or test pits to obtain samples of potential borrow material at each potential borrow source. Materials obtained from the borrow sources will be tested, as appropriate, for their gradations, Atterberg limits, specific gravity, durability and moisture-density relationship. Additionally, material identified for use as potential topsoil on the final cover will be tested for suitability for plant growth. Testing will include pH, cation exchange capacity, sodium absorption ratio and calcium carbonate content. Identified borrow areas will be CO7890010526 Date: July 1, 1988 Revision No.: 1 presented in the final design drawings as well as estimated reclaimed borrow contours. Evaluation of the existing ground-water collection and diversion system will entail exposing valves on the drain line to determine their operating position, and exposing the drain line near the slurry wall. Additional discussion of the evaluation is presented in Section 5.3.2. As presented on the schedule for closure in Section 2.7.3, these activities will be conducted prior to preparing the final design for closure. # 2.8 Administration of Closure Plan The closure plan for the present landfill will be kept at the Rocky Flats Area Office, Building 111, U.S. Department of Energy. The person responsible for storing and updating this copy of the closure plan is: Mr. Albert E. Whiteman Area Manager Date: July 1, 1988 Revision No.: 1 His address and phone number are: U.S. Department of Energy Rocky Flats Plant P.O. Box 928 Golden, Colorado 80402 Phone: (303) 966-2025 Mr. Whiteman is also responsible for updating other copies of the closure plan held off-site by sending additions or revisions by registered mail. # 2.9 Closure Cost Estimates and Financial Assurance State and Federal governments are exempt from the financial requirements imposed by Subpart H of 40 CFR 265.140(c). Therefore, no financial assurance documentation has been prepared for the landfill closure plan. The estimated cost for landfill closure is presented on Table IV. Date: July 1, 1988 Revision No.: 1 TABLE IV LANDFILL CLOSURE ESTIMATED CONSTRUCTION COSTS | <u>Item</u> | Quantit | <u>EY</u> | Unit Cost (\$) | Total Cost (\$) | |-------------------------------|---------------|-----------------|----------------------|-----------------| | Regrading | 50,000 | су | 3/cy | \$ 150,000 | | Interim Cover
Recompaction | 31,300 | су | 3/cy | 93,900 | | Sand Layers | 31,400 | су | 25/cy | 785,000 | | HDPE Membrane | 845,000 | ft ² | 0.65/ft ² | 549,300 | | Compacted Soil | 62,700 | су | 5/cy | 313,500 | | Topsoil | 31,300 | су | 3.50/cy | 109,600 | | Riprap | 1,700 | су | 40/cy | 68,000 | | Diversion Ditch | nes 33,300 | cy | 4/cy . | 133,200 | | Revegetation | 850,000 | ft ² | 0.13/ft ² | 110,500 | | | CONSTRUCTION | TOTAL | | \$2,313,000 | | | ENGINEERING 1 | DESIGN | (10%) | 231,300 | | | CONTINGENCY | (15%) | | 347,000 | | TOTAL | | | | \$2,891,300 | Date: July 1, 1988 Revision No: 1 #### 3.0 DECONTAMINATION PROCEDURES #### 3.1 North Sprayfield Area For a period of approximately seven years, water collected in Pond #1 or west pond was routinely sprayed onto the north sprayfield. Prior to beginning the installation of the final cap and cover at the landfill, soil samples from the north sprayfield will be analyzed to evaluate if contamination has occurred. A flow diagram of the sprayfield activities is shown on Figure 8. #### 3.1.1 Sprayfield Boundary The north sprayfield is located northwest of the east pond, and was used for spraying water contained in the west pond. The location of this sprayfield is shown on Figure 2. The dimensions of this sprayfield are approximately 280 feet by 480 feet. #### 3.1.2 Soil Sampling Prior to installation of the final cap and cover of the landfill, soil samples from the north sprayfield area will Date: July 1, 1988 Revision No: 1 be collected and analyzed, to evaluate if contamination has occurred. Based on water analyses from the west pond, contamination is not anticipated. The soil characterization plan for this study is to confirm the absence of contamination and is presented in Appendix 4. The basis for this soil sampling program is random sampling points, in conjunction with a direct radiation survey. Because any contaminants in the pond water would have been distributed due to the spraying action in a uniform dispersed area adjacent to the previous spray lines, only a limited number of samples are necessary to evaluate if contamination has occurred. A direct gamma radiation survey will be with a FIDLER conducted over the ground surface to detect measurable amounts of radioactivity. The assessment will be conducted in accordance with Rocky Flat radiation monitoring procedures (Rockwell, 1986c). Within the sprayfield, samples will be taken at the approximate locations shown on Figure 2. The locations to be sampled are relatively evenly sampled along the previous spray lines. Because any contamination which may have Date: July 1, 1988 Revision No: 1 occurred is expected to be uniform and dispersed along the spray line, localized hot spots are not anticipated nor does the sampling require the exact location of the spray lines. A total of three soil samples will be obtained in the sprayfield during the Phase I study. #### 3.1.3 Laboratory Analysis The soil samples collected at the sprayfield will be analyzed for the following: - . Volatile Organic Compounds (EPA 624) - . Semi-Volatile Organic Compounds (EPA 625) - . Metals - . Radionuclides. #### 3.1.4 Criteria for Evaluating Soil Contamination To evaluate whether soils in the sprayfield area have been contaminated, the laboratory results from the samples collected in the sprayfield will be compared to background soil values. The specific methods of comparison are outlined in the sampling plan, in Appendix 4. Date: July 1, 1988 Revision No: 1 #### 3.1.5 Method of Treatment or Disposal It is anticipated that the sampling program will show that the sprayfield area has not been contaminated. However, if the field work indicates the sprayfield has been contaminated, remedial alternatives will be evaluated, based on the types of contaminants present. Alternatives include: - . In-place treatment of contaminated soils. - Removal of contaminated soils, with disposal in the present landfill. - . Removal of contaminated soil with off-site disposal. - . Closure of the sprayfield with the contaminated soils left in place. #### 3.1.6 Schedule The study performed at the sprayfield will begin in August 1988, and will be completed by November, 1988. Any necessary remedial activities will be selected in December 1988. Anticipated implementation and completion times are shown on Figure 7. Date: July 1, 1988 Revision No: 1 #### 3.2 Decontamination of Equipment #### 3.2.1 Introduction As required by 6 CCR 1007-3, Sections 265.112(b)(4) and 265.114, construction equipment used during closure activities will be decontaminated. Currently, there is auxiliary equipment associated with the present landfill, as given in Section 2.6. Decontamination of construction equipment and the auxiliary equipment will involve the procedures described in the following section. #### 3.2.2 Decontamination Procedures All construction equipment involved with activities at the landfill which contact contaminated soils, the interim cover materials or rinsate will be scraped or brushed to remove chunks of soil or debris whenever the equipment leaves the construction area. The area used for scraping or brushing will have tarpaulins spread over the ground and will be raked and/or swept to collect all removed materials. The collected material will be placed in the landfill beneath the final cover. Construction equipment will then move to an adjacent one foot thick gravel decontamination pad. The Date: July 1, 1988 Revision No: 1 pad will be at least 50 feet square to accommodate heavy construction equipment. The top of the gravel pad will be at least one foot below the final grade for the interim cover. At the decontamination pad, equipment will be triple rinsed with a spray system. The decontamination spray system to be used will heat water to approximately 350°F under 250 pounds per square inch gauge pressure. The super-heated, high-pressure stream will be sprayed on the contaminated surface through a series of nozzles incorporated into the vacuum/spray cleaning head. The exact equipment used for decontamination will vary depending on contractor selection. The decontamination equipment used will provide for adequate decontamination of the construction equipment. Upon completing decontamination of equipment used for interim cover recompaction, the gravel pad will be covered with at least one foot of uncontaminated borrow soils compacted to interim cover specifications. Equipment used in this construction will either work only on uncontaminated soils or be of proper size to be subsequently decontaminated at Building 889. Date: July 1, 1988 Revision No: 1 Smaller construction equipment may also be decontaminated by a similar arrangement in Building 889. #### 3.2.3 Auxiliary Equipment The auxiliary equipment at the landfill will be decontaminated using the same procedures outlined in Section 3.3.2. # 3.2.4 Construction Equipment Used During Closure Construction equipment used during closure may include dozers, backhoes, front-end loaders, soil compactors, water trucks and liner seaming equipment. If large quantities of soil are to be removed, additional equipment, such as haul trucks and scrapers, may be used. Additional equipment may be used during closure, if necessary. All
construction equipment used at the site contacting contaminated soils, rinsate or the landfill interim cover materials will require decontamination as outlined in Section 3.3.2. CO7890010526 Date: July 1, 1988 Revision No: 1 #### 4.0 FINAL COVER #### 4.1 Regrading #### 4.1.1 Surface Runon Control Regrading of the ground surface adjacent to the landfill will be conducted as part of closure to reduce impacts of surface runon on the final cover. Regrading will involve enlargement and renovation of existing diversion ditches around the landfill. The existing diversion ditch locations, cross sections and proposed enlarged section are shown on Figures 3 and 9. The proposed diversion ditches will be designed to divert the peak storm runoff from the one-hour, 100-year storm event in each drainage, depending on the time of concentration of the drainage. A six-inch compacted clayey soil layer will be placed in the bottom of the diversion ditches for erosion control from the design storm. Control of surface runon to the landfill for flows in excess of the 100-year design storm will be provided by surface # EXISTING DIVERSION DITCH SECTION # PROPOSED DIVERSION DITCH SECTION SCALE 1"=10" 15 2 88 Chen & Associates Date: July 1, 1988 Revision No: 1 grading and final cover of landfill. Surface regrading of the landfill is presented in Section 4.1.2. #### 4.1.2 Landfill Regrading The existing landfill surface will be regraded to divert surface runoff on the landfill to the center of the top, down the eastern face and into the east pond. Topography for the conceptual cover design is presented on Figure 10. The final cover elevations will be based on actual ground surface of the landfill at time of final design. In designing final cover contours, consideration was given to cambering of the cover to drain surface runoff off the cover and into adjacent diversion ditches. However, such a design will be adversely affected by settlement of the landfill material. Such a design would also require placement of fill material to provide drainage. Additional fill material on the cover would result in additional settlement again adversely affecting the cover performance. As proposed, the effects of settlement on the cover will be to improve surface drainage. The final cover will have an approximate two percent grade. Based on computer modeling using the HELP computer program (Schroeder, 1983), the C07890010526 Date: July 1, 1988 Revision No: 1 proposed grade would provide the necessary runoff and cover drainage control. It is anticipated that the landfill material will experience approximately ten percent settlement of the overall fill height as a result of self-weight consolidation, dewatering, and additional consolidation under cover loading. As a result, final cover grade will be approximately three percent after settlement. Around the perimeter of the existing landfill, the ground surface will be graded to provide an approximate two-foot high berm prior to cover placement. The berm and cover placement will provide additional runon control for the landfill should storm events exceed the one-hour, 100-year design storm. The berm will also provide a point for ventilation of the gas collection system. # 4.2 Final Cover The final cover has been designed to meet performance standards set forth in Sections 265.228 and 265.310. The final cover will be a multi-layered section, designed and constructed to: Provide long-term minimization of the migration of liquids through the closed landfill; Function with minimum maintenance; - Promote drainage and minimize erosion or abrasion of the cover; - Accommodate settling and subsidence so that the covers integrity is maintained; and - . Have a permeability less than or equal to the permeability of any bottom liner system or natural subsoils present. To meet these standards, the cover will be comprised of three components: - Erosion control in the form of minimum slope grades and vegetation; - Drainage layer to expedite removal of surface infiltration and maintain cover stability; - . Infiltration barrier, including both a flexible membrane liner (FML) and low permeability compacted soil. Due to the presence of biodegradable materials within the landfill, the cover will also contain a gas collection component, this component is discussed separately in Section 6.0. # 4.2.1 Final Cover Extent The final cover will extend beyond the existing landfill boundary indicated on Figure 2. As shown on Figure 11, the C07890010526 Date: July 1, 1988 Revision No: 1 the cover will extend beyond the ground-water control and leachate collection system installed in 1974. The approximate area of the final cover will be 845,000 square feet. ### 4.2.2 Type of Materials The design of the multi-layered cap will conform to the performance standards in 6 CCR 1007-3, Section 265.310. The specified performance standards will be achieved on the landfill by utilizing a multi-layered cap. A typical cross section of the final cover is shown on Figure 12. Sand: The sand layers will be comprised of hard, durable sands or gravels having no more than five percent passing the U.S. standard No. 200 sieve. Final gradation of the sand drain material will be based on the gradations of the compacted soil layer material selected in final design. The sand drain layer will be designed to act as a filter against the compacted soil layer. During final design, characteristics of the compacted soil layer, anticipated hydraulic heads at the interface with the filter and required hydraulic conductivities for the drain material will be considered in selecting filter design criteria. Date: July 1, 1988 Revision No: 1 The sand layers will also serve a dual function as a bedding layer against the underlying synthetic membrane preventing the membrane from being damaged during the placement and compaction of the erosion control layers. The sand specified for the layers may be obtained from on-site borrow, if available, or will be imported to the site. Since the drain material will be placed against the synthetic membrane of the multi-layer cover, the maximum aggregate size is limited to 1/4 inch to prevent punctures. On the landfill top, flows within the drain will be collected by a six-inch diameter perforated drain pipe placed beneath the center surface drainage swale. The drain pipe will discharge into the riprap protection on the eastern face of the landfill, as shown on Figure 12. Interim Cover: The existing interim cover soils are the onsite clayey soils. These soils are similar to the materials proposed for the compacted soil discussed herein. Additionally, the interim cover materials contain some asphalt and concrete construction debris. During regrading and recompaction, material larger than the six inches in size will be removed from the upper 12 inches of the interim cover. Removal of the large material will allow more uniform compaction of the material. After initial surface grading, the upper one foot of interim soil cover will be scarified, moistened and recompacted to at least 95 percent of the maximum standard Proctor dry density with a moisture content of between two percent above and two percent below optimum moisture content. Compacted Soil: Published data and site investigation reports indicate that natural clayey soils available on the site classify as A-6 and A-7 in accordance with the AASHTO classification system (U.S. Department of Agriculture, 1984 and Woodward-Clevenger, 1974). The A-6 and A-7 soils are silty and sandy clays. The 24-inch compacted soil zone in the final cover section service the following purposes: - Provides protection of the low permeability sections from surface damage; - . Insulates the "functioning" sections, i.e., sand drain and low permeability barrier, from frost penetration. - Fortifies erosion protection beneath the topsoil by affording increased water erosion velocities; and - Permits deep root penetration without affecting the "functioning" sections to promote vigorous vegetation growth in an arid climate. Date: July 1, 1988 Revision No: 1 The on-site soil used in the compacted zone beneath the topsoil and above the sand drain will have more than 35 percent passing the No. 200 sieve, with a liquid limit greater than 30 and a plasticity index greater than 10. This soil layer will be placed in uniform 12-inch loose lifts, compacted to at least 95 percent of the maximum standard Proctor density. The material will be placed at a moisture content at or below optimum; however, strict moisture control will not be required because at the shallow depth of placement these soils will experience natural variations in moisture content. <u>Topsoil</u>: The topsoil layer will be constructed using onsite soils. The topsoil mixture will then be spread over the entire cover area to be vegetated. Vegetation of the cover is discussed in Section 4.4. The topsoil will be placed in a single uniform 12-inch loose (uncompacted) lift. <u>Riprap</u>: The area where the collected surface runoff from the landfill top discharges to the eastern face of the landfill will be riprap protected in order to prevent erosion of the final cover due to concentrated flows. The material will be hard, durable rock having no more than five percent passing the U.S. standard No. 200 sieve. The C07890010526 Date: July 1, 1988 Revision No: 1 average size (D_{50}) of riprap material required to resist flow velocities will be about eight inches based on Stephenson's method of analysis (Nelson, 1986). This method of analysis considers sheet flow conditions and accounts for flows within the riprap material. The maximum size of riprap will be 18-inches equal to the thickness of the riprap layer. The riprap will be imported to the site. Estimated flow velocity within the riprap material is about 1 fps which is less than those permissible for the compacted soil layer. As a result, riprap bedding will not be required. Supporting calculations for runoff and
erosion control design are presented in Appendix 2. Synthetic Membrane: A 30-mil high density polyethylene (HDPE) synthetic membrane will be placed above the gas collection layer and beneath the sand drain as shown on the cross section on Figure 12. The membrane will be manufactured from virgin first quality resin, designed and formulated specifically for use in hazardous waste environments. The HDPE membrane will meet the following minimum specifications: Date: July 1, 1988 Revision No: 1 | Property | Test Method | Test Value | |--|----------------------------|--------------------------------| | Density (g/cc) | ASTM D-792 | 0.935 | | <pre>Environmental Stress Crack (min., hrs.)</pre> | ASTM D-1693
Condition C | 1,500 | | Low Temp Brittleness | ASTM D-746 | - 75 ^o C | | Thickness | ASTM D-2103 | -5% to +10% | | Tensile Strength at Yield (psi) | ASTM D-638 | 2,000 | | Elongation at Yield | ASTM D-638 | 13% | | Tear Resistance (lb) | ASTM D-1004
Die C | 20 for 30-mil
40 for 60-mil | | Carbon Black | ASTM D-1603 | 2% to 3% | ## 4.2.3 Depth of Materials The depth of the materials were determined to provide the specified performance for protection of human health and the environment while maintaining an efficient design. The 12-inch topsoil depth is typical for support of native vegetation in the semi-arid region. The compacted on-site soil below the topsoil will be placed 24 inches thick. Adequate frost protection and protection from surface abrasion is provided by the combined 12 inches of topsoil and 24 inches of compacted on-site soil. Date: July 1, 1988 Revision No: 1 The sand drain layer will be six inches thick. The sand drain above the synthetic membrane is sized based on infiltration and drainage calculations using the HELP computer model (Schroeder, 1983). Results of the modeling are presented in Appendix 2. Based on the maximum drain length and initial slopes, and using a conservative hydraulic conductivity on the order of 1 x 10⁻³ centimeters per second, the six-inch sand drain will accommodate design flows. A 30-mil HDPE membrane will be placed below the sand drain to limit infiltration into the landfill. The membrane will be enclosed by sand layers to minimize potential damage and below frost depth, therefore, a heavier membrane was not justified. A six-inch sand layer will underlie the synthetic membrane. This layer will collect gases generated by the landfill and allow controlled venting of the gases through the final cover. The recompacted interim cover material is a "second" component beneath the synthetic membrane to minimize surface infiltration. The interim soil cover is comprised of sandy Date: July 1, 1988 Revision No: 1 clay materials and is between three and nine feet in depth (Woodward-Clyde, 1974). The 12-inch thick recompacted layer will have a reduced hydraulic conductivity in comparison to the overlying gas layer. ### 4.2.4 Volume of Materials The material volumes for the final cover are estimated as follows: | Material | Quantit | <u>y</u> | |--|---------|-----------------| | Sand Drain | 15,700 | yd ³ | | Gas Collection Layer | 15,700 | yd^3 | | Recompacted Interim Cover | 31,300 | yd^3 | | <pre>Compacted On-Site Soil (A-6 or A-7; compacted volume)</pre> | 62,700 | yd ³ | | Topsoil | 31,300 | yd^3 | | 30-mil HDPE | 845,000 | ${ t ft}^2$ | | Riprap | 1,700 | yd ³ | The material volumes may vary depending on final design and construction. Date: July 1, 1988 Revision No: 1 ### 4.2.5 Source of Materials Prior to final design, borrow source investigations will be conducted to identify and quantify materials for cover construction. If available, all natural cover material will be obtained from on-site borrows. Anticipated borrow sources at the Rocky Flats Plant will be in the vicinity of the landfill, in the buffer zone and/or west sprayfield. The distance to these borrow sources ranges from less than 0.25 to approximately 1.0 mile. If sand material and riprap are unavailable on-site or processing is uneconomical, the sand drain material and riprap will be imported to the site. The materials specified are commonly available through local suppliers from borrow sources in the region. Maximum haul distances will range up to 15 miles. Materials will be brought to the site and placed in sequence from construction of the final cover to avoid stockpiling and double handling. # 4.2.6 Final Cover Design Slope of Cover: The minimum slope of the cover will be two percent to promote surface runoff and reduce ponding and surface water infiltration. The minimum slopes will occur on the landfill top where existing slopes are nearly level. The maximum slope for the cover is 20 percent and will occur on the eastern face of the landfill. Erosion Protection: Final cover vegetation will provide erosion protection from surface runoff. Calculations to determine maximum surface velocities relative to permissible velocities for vegetated soil cover are presented in Appendix 2. Velocities were calculated using the rational formula for surface runoff assuming a 100-year, one-hour storm event, adjusted for the time of concentration for the central drainage swale. Flow velocities of 2.6 to 4.0 feet per second (fps) were calculated using Manning's equation. Maximum velocities will occur as slopes increase upon settlement of the cover. Permissible flow velocities below which surface erosion will not occur were obtained from referenced sources (Nelson, 1986; NAVFAC, 1982). The range of permissible velocity for the cover is 4 to 5 fps. Date: July 1, 1988 Revision No: 1 Therefore, the erosion of the soil and vegetation cover is not anticipated as a result of the design storm event. In addition, the compacted on-site soil beneath the 12 inches of topsoil contains sand and gravel sized particles, which are generally present in the colluvium near the landfill. In addition to the higher flow velocities permitted for compacted soil, the larger particles will provide self-armoring should flow velocities increase until the on-site compacted soil layer begins to erode. As a result, the compacted soil layer will provide additional erosion control for the final cover in the event the vegetative cover is eroded or lost on portions of the cover between maintenance periods. ### 4.2.7 Final Cover Stability Sliding Stability: The stability of the proposed final cover was evaluated for the maximum slope of five to one. An infinite slope analysis was performed to evaluate the sliding potential of the overlying drainage and erosional layers on the synthetic membrane. This point of the cover is considered critical for sliding as the frictional resistance between the synthetic membrane and the overlying Date: July 1, 1988 Revision No: 1 sand material is only approximately 60 percent of that of the sand and seepage forces may be present within the sand drain. Using conservative assumptions for sliding resistance and seepage forces within the sand drain, the final cover has a factor of safety against sliding in excess of 1.5. Settlement Stability: Final cover stability was also evaluated with respect to differential settlement. If the landfill material were to settle at a constant ratio to the height of fill material, settlement across the landfill would result in minimal strains on the synthetic membrane. However, due to the nature of the landfill construction, differential settlement of the cover is anticipated. Where differential settlements occur in short areas, the synthetic membrane might fail under strain. The synthetic membrane is quite elastic in comparison to the other natural materials in final cover design. Typically, a 30-mil HDPE membrane can withstand elongations of ten to 15 percent prior to yielding. Yield of the membrane is the point at which the membrane thickness is significantly reduced; however, the membrane is still intact. Rupture of the material requires strains greater than 100 percent. Evaluation of strain stability of the membrane was made by comparing the tensile strength of the synthetic membrane at yield to the sliding resistance on the membrane. The analysis indicated that the liner would slide on the sand layer prior to reaching yield strength. Calculations are presented in Appendix 2. Due to the elastic characteristics of the synthetic membrane, yielding of the membrane would require differential settlements on the order of five feet across a ten-foot span. Based on the operating history of the landfill, it is not anticipated that differential settlements of this order of magnitude would occur within the landfill. In summary, the synthetic membrane is capable of withstanding large strains resulting from differential settlement. Due to cover loads and high yield strength of the membrane material, the membrane will slide along the underlying sand layer prior to reaching yield strains. The membrane movement will redistribute stresses over a greater portion of the membrane and thus reduce strains. The membrane will therefore accommodate landfill settlement and retain its integrity. Date: July 1, 1988 Revision No: 1 ### 4.2.8 Infiltration Control Infiltration through the final cover will initially be reduced by surface grading, evapotranspiration from the vegetation cover and the reduced permeability of the compacted soil layer. However, it is recognized that some waters will infiltrate beneath the compacted soil layer. Further infiltration of the water will be reduced by placing a 30-mil HDPE synthetic membrane below the six-inch sand drain layer. Most infiltrating waters will therefore be diverted through the sand drain and out the cover. The synthetic membrane will provide the cover with a permeability less than the natural soils underlying the landfill. Although the intact HDPE material is for practical purposes impermeable, field seaming of the membrane panels, other
construction defects and damage may occur to the membrane. As a result, there will be an effective permeability of the membrane based on the percentage area of defects to the overall membrane area. For purposes of the computer modeling, it was conservatively assumed that for every 100 feet of seam, there was one foot having a hairline opening or an equivalent hole opening of 0.001 square foot. Based Date: July 1, 1988 Revision No: 1 on the proposed final cover and the assumed inefficiency of the synthetic membrane, the HELP computer model was run and an estimated 1,000 cubic feet of water infiltrated through the synthetic membrane on a yearly basis. In comparison it is estimated that 144,000 cubic feet of water per year infiltrate the existing cover. The synthetic membrane will be underlain by a six-inch sand layer which will act as a gas collection layer. However, the gas collection layer will also provide drainage below the synthetic membrane should waters pond on the underlying interim cover. Drainage collected by this layer will be discharged into the proposed water collection system along the eastern boundary of the landfill as shown on Figures 10 and 13. The gas collection system will also serve as bedding layer for the synthetic membrane preventing damage to the synthetic membrane as a result of construction of the overlying cover components. # 4.2.9 Cover Equipment For construction of the final cover, standard construction equipment will be utilized. Equipment utilized in construction which contacts the interim cover will be Date: July 1, 1988 Revision No: 1 decontaminated as presented in Section 3.3.2 prior to reuse in construction of the final cover. Decontamination of the equipment will preclude the possibility of contamination of the upper components of the cover by equipment. Actual construction equipment and amount required to construct the final cover will, for the most part, be at the contractor's discretion. Equipment required to recompact the interim cover and place the gas collection layer may consist of a water truck, dozers, front end loaders, compactors (sheeps-foot), harrowing disks and dump trucks for transporting of material. During construction, only that equipment essential for landfill regrading and interim cover recompaction will be placed on the interim cover. As practical, equipment currently used in operation of the landfill will be utilized for regrading and recompacting. This will minimize the equipment requiring decontamination. During construction of the gas collection layer, equipment will, as much as practical, work on top of the imported sand and thus, will not require decontamination. Installation of the synthetic membrane will require the use of front end loaders to transport roll stock for field Date: July 1, 1988 Revision No: 1 seaming. Field seaming equipment will be in accordance with liner manufacturer's specifications. Construction equipment used for installation of the sand drain and erosion control layers will be similar to the equipment used for recompaction of the interim cover and installation of gas collection layer. However, only smooth drum compactors will be utilized for placement of the drain layer and the first 12 inches of compacted soil material overlying the drain. The sheeps-foot compactor will be prohibited from use in order to preclude damage to the synthetic membrane during compaction. Stopping or turning of equipment on the five to one slope will not be permitted until the first 12 inches of compacted soil has been placed. Placement of the topsoil, seed and mulch on the vegetative cover require dozers or tractors with crimping and harrowing discs, trucks for hay mulching and seed application equipment. 99 # 4.4 Vegetation The surface of the cap will be stabilized to decrease erosion by wind and water, and in a manner which will contribute to the development of a stable surface environment. This will be accomplished by establishing a vegetative cover on the cap. The total area requiring revegetation will be approximately 850,000 square feet. Vegetation of the cover will be conducted by seeding with a mixture of native grasses. The mixture will consist of: | Grass | Quantity (pounds) | |--|---| | Western Wheatgrass
Thickspike Wheatgrass
Little Bluestem
Green Needlegrass
Canby or Canada Bluegrass | 6.0
3.0
2.0
2.0
1.0
14.0 pure live | | | seed/acre | The properties of the native grass mix are: - . A root structure which will not penetrate the cover, - . Require no irrigation after the grass has been established, - . Be capable of withstanding the temperature range experienced at Rocky Flats, - . Require little fertilization after initial seeding, and Be compatible with the soil properties, such as pH, of the vegetative layer. Preparation of the topsoil layer will include ripping of the upper six inches, applying two tons per acre of weed free native hay mulch and crimping the mulch with a crimper disc. The fertility of the topsoil layer will be analyzed in the first year and appropriate fertilizers applied to the cover in the second year, if needed. Irrigation will not be required. Additional periodic maintenance will be performed, including reseeding and weed control, as necessary. The landfill cover and vegetative growth will be inspected quarterly as specified in the Part B Post-Closure Care Permit. During this inspection, trees and bushes will be removed, and the condition of the vegetation will be observed. # 4.5 Final Cover Maintenance Maintenance of the cover will include filling and regrading of surface erosion and reseeding to maintain the vegetative cover. If required, replacement of riprap material on the face of the embankment will be performed. Gas ventilation pipes will be repaired or replaced as required to provide positive ventilation. Details of cover maintenance are presented in the post-closure care permit. # 4.6 Health and Safety Plan A site specific Health and Safety Plan, or such health and safety procedures identified in the Rocky Flats Plant Operational Safety Analysis (OSA), covering landfill closure activities will be prepared during final design. The plan will be submitted to the Colorado Department of Health for review and will comply with all applicable requirements. The procedures presented below are guidelines that will be followed during closure activities. Additional procedures and details will be presented in the site specific Health and Safety Plan or the OSA. Worker safety guidelines, such as OSHA regulations, DOE orders and Rocky Flats Plant policies will be followed. Protective clothing will be similar in nature to: - . hardhats, - . hard-toe boots, - . Tyvek overboots, - . Tyvek suits, - . dust masks, and - air-purifying respirators or self-contained breathing apparatus (optional). The intent of this equipment is to provide a barrier to inhalation, ingestion and absorption of contaminated materials. Appropriate protective gloves will be used based on the contamination found at any particular site. Air monitoring will be conducted in the work area. Portable high-volume (40 cfm) samplers or fixed radioactive ambient air samplers (25 cfm) will be located around the excavation area, including at probable downwind locations. Air monitoring will also be conducted using hand-held photoionization detectors. The site specific health and safety plan or OSA will present levels, which if exceeded, will require some action be taken, such as increasing respiratory protection or work cessation. A Rocky Flats Environmental Sciences representative will be monitoring conditions during excavation activities. This person will have the authority and responsibility to terminate the work if any of the following events occur: - . Wind speeds exceed 24 km/hr (15 mph). - . Any visible dust is present or there is any indication that dust control measures are inadequate. . The total long-lived alpha concentrations measured on filters from high-volume samplers exceed 0.06 pCi/m³. Dust control procedures will then be re-evaluated. - . Power failure. - Heavy rainfall or snow. Airborne contamination may require upgrading dust masks to air-purifying respirators or self-contained breathing apparatus. Sudden increases in airborne contamination due to excavation in localized highly contaminated areas may be addressed by a temporary cessation of work until natural dissipation reduces contamination. # 4.7 Quality Assurance and Quality Control ### 4.7.1 Quality Control Quality control of the landfill closure will include materials, lines and grades, and placement. The specific method for controlling the quality of material in each of these areas will be presented in the final construction specifications, general quality control guidelines are presented below. 104 Date: July 1, 1988 Revision No: 1 control of material quality will be by random sampling at specified intervals. Earthen materials may be tested for their characteristics such as gradation, Atterberg limits, moisture-density relation, specific gravity and durability. Manufactured materials will be certified by the manufacturer that it meets the project specifications. Throughout the closure of the landfill, materials utilized will be visually observed during placement to see that the materials meet the intended use and project specifications. Control of lines and grades during closure will be by surveying. Surveys will be conducted under the supervision of a registered land surveyor. Deviation from construction drawings will be indicated and as-built drawings showing constructed lines and grades will be prepared upon completion. Control of placement will overall be by visual observation of the methods, equipment and practices utilized for placement of materials. Earthen materials will also be tested for
proper placement by in-place testing of moisture, densities and gradations, as applicable. Control of imported materials, sand and riprap, will be by random sampling of trucks. These materials will be sampled at Date: July 1, 1988 Revision No: 1 least every 1,000 cubic yards (cy) and tested for gradation and durability. Additional testing will be conducted if materials appear to vary significantly between truck loads. The riprap material will also be tested in at least in two locations for the in-place gradation. On-site materials will be tested for gradation and Atterberg limits every 1,000 cy. If gradations or Atterberg limits vary significantly, from previous materials a standard Proctor density curve shall will developed for the material. place density and moisture content will be tested for every 1,000 cy of material placed. As a minimum, one in-place moisture-density test will be taken per day per lift during fill compaction. Manufactured materials will be tested, as appropriate, to determine that field installation methods have produced the required quality of product. synthetic membrane will have all field seams tested in accordance with the manufacturer's recommendations. As a minimum, all field seams will be visually inspected. Quality control testing will be performed in accordance with ASTM or other recognized test procedures. Date: July 1, 1988 Revision No: 1 ### 4.7.2 Quality Assurance To assure that the quality control plan is being implemented during closure of the facility, a quality assurance plan will also be set forth as part of the final construction documents. The quality assurance plan will set forth the time intervals between quality assurance reviews, information to be reviewed and procedures for correction of quality control problems if present. As a minimum, the quality control program will be reviewed at a point when approximately 20 percent of the work is completed, at approximately 60 percent completion and at completion. The quality assurance reviews shall include all test results subsequent to the previous review, observation of test procedures, review of randomly selected test worksheets and evaluation of the procedures for quality control checks. The quality assurance plan will be dependent on the quality control specifications and the time schedule for closure. It is anticipated that the certifying engineer for closure will provide quality assurance reviews. Date: July 1, 1988 Revision No: 1 # 5.0 COLLECTION, REMOVAL AND TREATMENT OF LEACHATE AND GROUND-WATER # 5.1 Introduction A system was installed around the perimeter of the landfill in 1974 as part of the landfill expansion. The system was designed to collect and remove leachate from within the landfill and to intercept and divert uncontaminated groundwater flow outside of the landfill away from the landfill area. The leachate collection system was intended to intercept leachate and lower ground-water levels within the landfill. For the subsequent expansion of the landfill in 1982, the ground-water diversion was extended using a soilbentonite slurry wall as shown on Figure 3. The slurry wall was intended to reduce migration of ground water into the landfill area only, no provisions were made for collection and diversion of the ground water. CO7890010526 Date: Date: July 1, 1988 Revision No: 1 # 5.2 Existing Leachate Collection System The existing leachate collection system was constructed in 1974, as shown on Figures 3 and 4. The construction of the leachate collection system is discussed in more detail in Section 2.2. At present, the leachate collection system is covered by landfill wastes and the original discharge points for the system were covered during expansion of the landfill. Based on current water level measurements within the landfill, presented in Appendix 6, it does not appear that the leachate collection system is lowering water levels within the landfill. Causes of disfunctioning may include blockage of the discharge points by landfill material, migration of the landfilled material into the collection system and migration or installation of slurry wall material through the collection system. ### 5.2.1 Maintenance of Leachate Collection Systems Based on current ground-water levels, the existing leachate collection system does not appear to be functioning. Several factors may be influencing the functioning of the system. Based on the overall closure plan for the landfill, the existing leachate collection system would not be of Date: July 1, 1988 Revision No: 1 significant benefit. Therefore, the evaluation and remedial construction necessary to re-establish functioning of the drain is not justified. ### 5.2.2 Volume of Leachate The existing leachate collection system may have collected some leachate initially; however, there is no documentation of the volume of water collected by the system. # 5.3 Ground-Water Control System ### 5.3.1 Existing Ground-Water Control System A system to control ground-water migration into the existing landfill was constructed at the site in 1974 and extended in 1982. Details regarding the design and construction of the system are presented in Section 2.2. The existing ground-water control system is comprised of two components. The first component is a drainage blanket extending through the overburden soils to or near to the top of bedrock. Ground-water flow intercepted by the blanket drain was designed to be collected in drainage pipe and discharged into downstream Date: July 1, 1988 Revision No: 1 ponds or the surface drainage downgradient of the ponds. The second component of the system is a soil-bentonite slurry wall tying in with the drain system and extending downstream of the landfill. ### 5.3.1.1 Blanket Drain As originally intended, the blanket drain system would intercept and divert shallow ground-water flows away from the landfill. With the expansion of the landfill into the trench containing the blanket drain, the drain may have collected leachate which migrates through the clay liner overlying the blanket drain. Based on water level measurements in the first quarter of 1988 (Appendix 6), the drain appears only partially effective. Monitoring wells placed at the western end of the landfill indicate a drawdown in ground-water levels adjacent to the drain. However, water levels in the monitoring wells established at the north and south sides of the landfill near the intersection of the slurry wall and blanket drain show no appreciable effect of the drain. As a result, water collected by the blanket drain system is impounded at the eastern ends of the system. As the drain Date: July 1, 1988 Revision No: 1 pipe provides the only outlet of discharge from the system, the improper functioning of the system may be the result of the outlet being closed. The blanket drain system, if functional, would aid in reducing water levels within the landfill. During final design, this system will be evaluated to see if it can be made functional. Evaluation of the system will include locating the discharge system valves, shown on Figure 3, to determine their operating position. The valves will be positioned such that all discharge is routed to the east pond. The discharge pipe in the vicinity of the slurry wall will be exposed and the piping upgradient and downgradient checked for blockage. As practical, valves and piping will be repaired or replaced to return the blanket drain system to working order. If the system cannot be made functional, the drain pipe outlet will be permanently blocked to reduce pathways for leachate migration out of the landfill. # 5.3.1.2 Slurry Wall The actual effectiveness of the slurry wall component cannot be evaluated because as-built documents are not available. However, as originally designed, the slurry wall will Date: July 1, 1988 Revision No: 1 provide a barrier to ground-water migration into the landfill and thus reduce overall water levels within the landfill. # 5.3.2 Proposed Ground-Water Collection System ### 5.3.2.1 Introduction Based on recent ground-water quality sampling and analysis, Appendix 6, the landfill does appear to have had some impact to ground-water quality. Impacts to ground-water quality from hazardous constituents is limited to inconsistent, low-level concentrations up and downgradient of the landfill. Therefore, the landfill does not appear to be directly impacting ground water with hazardous constituents. Because there are impacts to ground-water quality at the site, relatively high water levels within the landfill and as closure activities could result in changes in the quality of water from beneath the landfill, a ground-water collection system is proposed for closure. Date: July 1, 1988 Revision No: 1 # 5.3.2.2 Proposed Collection System The ground-water collection system will be constructed at the downstream toe of the final landfill cover as shown on Figure 9. The collection system will be a gravel drain excavated through the surface colluvial and alluvial material into the underlying claystone bedrock as shown on Figure 12. The drain will lower water levels within the landfill and collect potentially impacted ground-water flows within the surface soils and shallow bedrock. Collected water will be pumped to the east pond area. The proposed collection system will be designed using criteria for water storage projects. Such criteria have proven successful for construction of long-term, no maintenance drainage systems. Based on current water quality information, no significant chemical reactions such as oxidation, reduction or precipitation would occur as intercepted waters enter the drain system which could affect drain functioning. Pump and piping repair and/or replacement may be required during the operating life of the collection system. It is anticipated that stable groundwater levels and water quality will be achieved during closure of the landfill such that long-term pumping operation of the collection system will not be
required. The proposed ground-water collection system is estimated to have a discharge of about one gallon per minute. The actual volume collected by the system will be dependent on subsurface conditions encountered during construction of the drain. The presence of more pervious soils and sandstone lenses within the bedrock may increase flows. Other factors influencing volumes collected by the system are long-term stabilized water levels within the landfill and the effectiveness of repairs to the existing ground-water control system. A 30-mil HDPE membrane will be placed on the downstream side of the drain to reduce inflow from the east pond. During final design, an evaluation of the site will be made to determine if a cut off wall extending deeper than the existing systems can be installed to eliminate ground-water migration into the landfill. Based on the engineering studies during final design, the cut off wall may be installed to effect additional ground-water control. Date: July 1, 1988 Revision No: 1 ### 5.4 Water Storage The water collected by the ground-water control systems will be discharged to the existing east pond for storage and evaporation. The east pond will be operated as a zero discharge impoundment to surface drainages for the 100-year, 24-hour storm event after closure. During closure of the landfill, the water elevation in the east pond will be lowered to a maximum elevation of about 5915. This maximum pool elevation will be maintained during post-closure resulting in approximately 11 acre-feet of excess storage in the pond. This excess storage will hold all the runoff from the 100-year design storm. Excess pond water will be spray evaporated, pumped to an existing COPDES permitted discharge point or discharged under a new COPDES permit for the east pond. Final excess storage volume and water elevations will be determined during final design. ### 5.5 Water Treatment Based on recent sampling and analysis (Appendix 6), the quality of water collected by the ground-water interception systems would not require treatment prior to discharge into CO7890010526 Date: July 1 Revision No: the east pond. However, closure activities for the landfill will result in reduction of ground-water levels within the landfill area. Changes in ground-water conditions within the landfill may result in variations in water quality. Water collected by the systems will be analyzed on a routine basis at the discharge point and in the east pond, and appropriate management methods instituted if contamination is found. Criteria for evaluating water contamination is presented in Appendix 6. July 1, 1988 Should variations in the water quality be sufficient to require treatment of the east pond waters, a treatment system will be constructed to handle contaminated waters at the plant site. #### 5.6 Ground-Water Monitoring Assessment and monitoring of ground-water quality and contamination will be conducted utilizing the existing monitoring wells at the landfill. Monitoring wells installed for additional engineering studies will also be utilized as appropriate. Monitoring prior to and during closure of the landfill will be by routine quarterly monitoring of all existing wells and those selected from CO7890010526 Date: July 1, 1988 Revision No: 1 additional studies. In addition, the east pond will be sampled quarterly at the west and east ends. Post-closure monitoring of ground-water is discussed in Section E of the Post-Closure Care Permit. CO7890010526 Date: July 1, 1988 Revision No: 1 #### 6.0 GAS COLLECTION #### 6.1 Introduction The disposal of solid waste by landfilling employs engineering principles and construction methods to confine waste to the smallest area practical, compact the waste into the lowest volume possible, and cover the waste with layers of soil to limit exposure of the materials to the environment. This method inadvertently creates conditions in which gases may be produced, vented to the atmosphere and migrate laterally through the soil to outlying areas. Gas production is stimulated by biodegradable materials such as food wastes, paper, textiles and wood. The period of gas generation from a solid waste landfill may range from a few years to tens of years. The active gas production life is dependent on site-specific conditions including the levels of oxygen present, moisture content of the wastes, pH, temperature and waste composition. Some components of landfill-generated gas are methane, hydrogen sulfide and carbon dioxide. Date: July 1, 1988 Revision No: 1 #### 6.2 Soil-Gas Survey A soil-gas survey was conducted at the landfill to evaluate levels of methane and hydrogen sulfide being generated by the landfill. The results of the survey are presented in the report by Chen & Associates in Appendix 3. The results of the survey indicated little or no methane and hydrogen sulfide generation from the landfill. However, readings from the portable gas chromatograph utilized in the survey did indicate the presence of other volatile compounds. The unknown compounds were not identified nor quantified as part of the survey. #### 6.3 Gas Collection System Based on the results of the soil-gas survey, a large active gas collection and ventilation system appears unnecessary for the landfill closure. However, some low levels of methane were detected in the survey and other unknown compounds were present in the landfill soil-gas. Due to the presence of the synthetic membrane, low level gas concentrations could collect beneath the membrane. Collected gases would migrate through the membrane at flaws or defects within the membrane. It is not anticipated that CO7890010526 Date: July 1, 1988 Revision No: 1 the gas leakage would be significant enough to result in a health or environmental hazard; however, leakage could adversely affect the vegetative cover. Although the soil-gas survey indicated low levels of methane and hydrogen sulfide at the landfill, closure activities will lower water levels within the landfill. Landfill material previously below the water surface may undergo aerobic digestion upon dewatering, resulting in gas generation. The amount of gas generated during water level drawdowns will be dependent on the amount of drawdown achieved, types of landfill material within the area of drawdown and amount of previous biodegradation which has occurred in the materials. As a precaution against future generation of landfill gases and to reduce the potential for vegetative cover stress due to concentrated leakage of gases through the membrane, a passive gas collection and venting system will be installed on the landfill. The system will consist of a six-inch layer of sand placed below the synthetic membrane and vented around the perimeter and across the front crest of the landfill at a 200-foot spacing. The vent pipes will be placed approximately two feet above the final cover which CO7890010526 Date: July 1, 1988 Revision No: 1 even in low wind situations will provide a negative pressure gradient on the vent to exhaust collected gases. The proposed gas collection and ventilation system is shown on Figure 11. The gas vent pipes will be constructed of HDPE material in order to ease sealing with the synthetic membrane. #### 6.4 Gas Collection System Maintenance As part of the post-closure maintenance of the cover, explosimeter measurements will be taken in the gas vent pipes to monitor the performance of the system and potential changes in gas generation from the landfill. If monitoring indicates significant increases in the gas generation from the landfill, modification of the gas collection and ventilation system may be implemented. Modifications may include the addition of turbines to the ventilation pipes to actively draw gases from the collection layer and/or installation of additional vent pipes in the final cover. Intervals and criteria for evaluating changes in gases will be set forth in the post-closure permit. CO7890010526 Date: July 1, 1988 Revision No.: 1 #### 7.0 INSTALLATION AND MAINTENANCE OF FENCE The existing security measures at the Rocky Flats Plant include: - a three-strand barbed wire cattle fence surrounding the facility (Figure 1) posted to identify the land as a government reservation/ restricted area, - a fence surrounding and guards posted 24 hours per day at two gates to the controlled area of the facility (Figure 1), - a 6-foot high chain link fence topped by 2 feet of three-strand barbed wire surrounding and guards posted 24 hours per day at gates to the perimeter security zone (PSZ), - guards patrolling the controlled area and the PSZ 24 hours per day, and - . surveillance by security cameras 24 hours per day. At the landfill, a four-foot high fence has been installed around the perimeter of the landfill. The fence has an access gate and posted warning signs. This fence and the existing fences and gates are operated and maintained by U.S. DOE. Maintenance requirements will be performed by U.S. DOE, regardless of the activities at the landfill. The security measures are sufficient to meet the requirements of 6 CCR 1007-3, Section 265.14. Date: July 1, 1988 Revision No.: 1 #### 8.0 CLOSURE CERTIFICATION #### 8.1 Certification Requirements Closure certification requirements are outlined in 6 CCR 1007-3, Section 265.115 and 40 CFR 265.115: "Within 60 days of completion of closure of each hazardous waste surface impoundment, waste pile, land treatment, and landfill unit, and within 60 days of completion of final closure, the owner or operator must submit to the (Department of Health/Regional Administrator), by registered mail, a certification that the hazardous waste management unit or facility, as applicable, has been closed in accordance with the specifications in the approved closure plan. The certification must be signed by the owner or operator and by an independent registered professional engineer." Certification by an independent registered professional engineer does not guarantee the
adequacy of the closure procedures and does not necessarily involve detailed testing and analyses. It implies that, based on periodic facility inspections, closure has been completed in accordance with the specifications in the approved closure plan (U.S. Environmental Protection Agency, 1981). Date: July 1, 1988 Revision No.: 1 ## 8.2 <u>Activities Requiring Inspections by a Registered Professional Engineer</u> The following closure activities will be inspected by a registered professional engineer: - removal, treatment and disposal of contaminated soil, if necessary, - grading of landfill, - installation of gas collection system, - placement of cap, - installation of ground-water collection system, - repair of the existing ground-water collection system, - vegetation, and - Decontamination of the equipment used at the landfill. A summary of these activities and the dates when they occurred will be presented in the closure certification report. As a minimum, these activities will be inspected near the start of work, at approximately half completion and at completion. Inspections will incude visual observation of the work and review of quality control testing. The engineer will obtain and review the results of chemical and engineering testing which provide a record of the CO7890010526 Date: July 1, 1988 Revision No.: 1 progress and effectiveness of the implemented closure plan. Documentation supporting closure certification will be included in the certification report. This documentation will include surveying records verifying final slopes and contours, and records of equipment decontamination. Any deviations from the closure plan and their resolutions will be documented by the engineer performing the closure certification. ## 8.3 Anticipated Schedule of Inspections by a Registered Professional Engineer An independent registered engineer will periodically review the closure operations listed in Section 8.2 in order that a final certification of closure can be developed which states that the closure has been carried out according to the plan. The engineer will observe construction activities and be present during performance and completion of key closure activities. The independent registered professional engineer and the owner will, at the end of closure, inspect the site and certify that the closure plan was carried out as described. Prior to final certification, deficiencies noted by the CO7890010526 Date: July 1, 1988 Revision No.: 1 engineer will be corrected. When deficiencies have been corrected, the engineer will issue a written report to the regulatory agencies certifying that the facility has been closed according to this closure document. The certification of closure, signed by the owner and the independent registered professional engineer, will be mailed to the CDH within 60 days after completing closure of the landfill. Date: July 1, 1988 Revision No.: 1 #### REFERENCES #### Aerial Photographs | 1968: | Colorado Aerial Photo Service, Flight No. 129, Photo No. 385 to 387, 4/10/68 | |-------|--| | 1969: | Agricultural Stabilization and Conservation Service, Flight No. AIN-1KK, Photo No. 152 to 156 & 161 to 165, 8/7/69 | | 1970: | Colorado Aerial Photo Service, Flight No. 132, Photo No. 25, 4/25/70 | | 1971: | U.S. Geological Survey, Flight No. GS-VCUC, Photo | |-------|---| | | No. 2-28 to 2-30, 2-87 to 2-90 & 2-103 to 2-105, | | | 8/6/71 | | 1972: | Colorado | Aerial | Photo | Service, | Flight | No. | 135, | |-------|-----------|---------|--------|------------|--------|-----|------| | | Photo No. | 17 to 1 | 9 & 93 | to 95, 4/2 | 24/72 | | | | 1974: | Colorado | Aerial | Photo | Service, | Flight | No. | 140, | |-------|-----------|--------|-------|----------|--------|-----|------| | | Photo No. | | | . — . | | | • | | 1975: | Colorado | Aerial Service, | Flight No. | 142, | Photo | No. | |-------|----------|-----------------|------------|------|-------|-----| | | 27 & 28, | 10/15/75 | | | | | | 1976: | Colorado | Aerial | Photo | Service, | Flight | No. | 144, | |-------|-----------|---------|---------|----------|--------|-----|------| | | Photo No. | 19 & 20 | . 10/8/ | 76 | | | | | 1977: | Colorado | Aerial | Photo | Service, | Flight | No. | 146, | |-------|-----------|---------|-------|----------|--------|-----|------| | | Photo No. | 26 & 27 | 10/12 | 177 | | | | | 1978: | Colorado | Aerial | Photo | Service, | Flight | No. | 148, | |-------|-----------|---------|---------|----------|--------|-----|------| | | Photo No. | 10 & 11 | . 10/15 | 778 | | | | | 1979: | Colorado | Aerial | Photo | Service, | Photo | No. | 80-82, | |-------|----------|--------|-------|----------|-------|-----|--------| | | 5/12/79 | | | | | | | - 1980: Colorado Aerial Photo Service, Photo No. 22-25, 10/19/80 - 1981: Colorado Aerial Photo Service, Photo No. 59-61, 10/19/81 CO7890010526 Date: July 1, 1988 Revision No.: 1 1982: Colorado Aerial Photo Service, Photo No. 34 & 35, 10/4/82 1983: Colorado Aerial Photo Service, Photo No. 53 & 54, 10/5/83 1984: Colorado Aerial Photo Service, Photo No. 32 & 33, 11/18/84 1985: Colorado Aerial Photo Service, Photo No. 36 & 37, 10/5/85 1986: Sharf & Associates, Flight No. 153.65, Photo No. 75005PB-1-1 to 75005PB-9-16, 5/21/86 Colorado Department of Health, 1979: Colorado Department of Health, January 30, 1979, letter to Rockwell International. - Hydro-Search, 1985: Hydro-Search, Inc., December 1985, "Hydrogeologic Characterization of the Rocky Flats Plant, Golden, Colorado," Project No. 1520. - Illsley, 1986: Illsley, C.T. and Thompson, H., September 4, 1986, personal communication. - Lord, 1977: R.V. Lord & Associates, December 19, 1977, "Proposed Landfill Expansion, Rocky Flats, Jefferson County, Colorado," Rockwell International. - NAVFAC, 1982: Naval Facilities Engineering Command, Department of the Navy, May 1982, "Soil Mechanics," HAVFAC DM-7.1. - Nelson, 1986: Nelson, J.D., Abt, Volpe, S.R., Van Zyl, D., Colorado State University, Hinkle, N.E., Staub, W.P., Oak Ridge National Laboratory, June 1986, "Methodologies for Evaluating Long-Term Stabilization Designs of Uranium Mill Tailings Impoundments," NUREG/CR-4620, ORNL/TM-10067. - Rockwell, 1981: Rockwell International, October 1981, "Design Criteria for Sanitary Landfill Expansion," FE-1161(67)-3. CO7890010526 Date: July 1, 1988 Revision No.: 1 Rockwell, 1986a: Rockwell International, July 21, 1986, "Draft Work Plan, Geological and Hydrological Site Characterization," Rocky Flats Plant, unnumbered report. - Rockwell, 1986b: Rockwell International, April 25, 1986, "Annual Environmental Monitoring Report, U.S. Department of Energy, Rocky Flats Plant, January through December 1985," RFP-ENV-85. - Rockwell, 1986c: Rockwell International, July 28, 1986, "Radiation Monitoring Procedures Manual," Rockwell International, RMPM. - Schroeder, 1983: Schroeder, P.R., Morgan, J.M., Walski, T.M., and Gibson, A.C., 1983, "The Hydrologic Evaluation of Landfill Performance (HELP) Model," U.S. Army Engineer Waterways and Experiment Station, Vicksburg, MS. - U.S. Department of Agriculture, 1984: U.S. Department of Agriculture, 1984, "Soil Survey of Golden Area, Colorado, Parts of Denver, Douglas, Jefferson, and Park Counties," unnumbered report. - U.S. Department of Energy, 1986: U.S. Department of Energy, July 31, 1986, Compliance Agreement," Rocky Flats Plant, agreement with the U.S. Environmental Protection Agency and the State of Colorado. - U.S. Department of Energy, 1987a: U.S. Department of Energy, December 15, 1987, "RCRA Part B Operating Permit Application for U.S. DOE-Rocky Flats Plant Hazardous and Radioactive Mixed Wastes," CO7890010526, Revision No. 1. - U.S. Environmental Protection Agency, 1985a: U.S. Environmental Protection Agency, October 1985, "Handbook, Remedial Action at Waste Disposal Sites (Revised)," EPA/625/6-85/006. - Weston, 1986a: R.F. Weston, Inc., May 30, 1986, "Waste Stream Identification, Rocky Flats Plant, Area 1," W.O. 2029-13-04-0001. - Weston, 1986b: R.F. Weston, Inc., June 20, 1986, "Draft Waste Stream Identification Survey, Area 2, Rocky Flats Plant, Golden, Colorado," W.O. 2029-13-04-0001. CO7890010526 Date: July 1, 1988 Revision No.: 1 - Weston, 1986d: R.F. Weston, Inc., August 27, 1986, "Waste Stream Identification Survey, Area 4, Rocky Flats Plant, Golden, Colorado," W.O. 2029-13-04-0001. - Weston, 1987: Roy F. Weston, Inc., Recommendations on Disposal of Waste Streams. - Woodward-Clevenger, 1974: Woodward-Clevenger & Associates, Inc., January 17, 1974, "Geotechnical Services, Proposed and Existing Landfills, Dow Chemical Rocky Flats Plant, Near Golden, Colorado," Job No. 17536-350. - Zeff, 1974: Zeff, Cogorno and Sealy, Inc., June 26, 1974, "Proposed Sanitary Landfill Renovation," Dow Chemical Company. ## APPENDIX 1 ENGINEERING DRAWINGS ## APPENDIX 2 VOLUMES AND ENGINEERING CALCULATIONS Consulting Geotechnical Engineers SULLECT VOLUMES FOR COVER CHECKED SHEET 1 OF ARRA of Cover 845,000 Fr2 ESTIMATED VOLUME of REGRADING 50,000 cy or ~ 12'of REGRADIAN OVERALL Volume of RIPRAD 300' × 100' × 1.5' = 1700 c7 Vocume of material 845,000 FT2 * 1 FT / 31,300 cy CompaCTED Soil Layer 22 2.5 + 31,300 = 78,250 cy Top Soil Layer 0.5' 0.5 * 31,300 = 15,650 cy SAND LAYERS 1 31,300 67 RECOMPACTED INTERIM COVER 31,300 07 HDPE - 845,000 FTZ= 94,000 59 YD HDPE pipe = 1300 FT Consulting Geotechnical Engineers SULLECT VOLUMES of COVER CHECKED SHEET Z OF EXCAVATION IN DIVERSION DITCH Lenath 4000' Volume of EXCAVATION 1 25' 15' 1 A & 8' 75' 225 FT2 Vocame = 225 4 4000/ = 33,300 c7 Summary Imported SANO = 31,300 cy Imported Riprap - 1700 cy HDPE Liner = 94,000 sy HDPE Pipe = 1300 FT Compacted Soil = 78,300 cy Top Soil = 15,700 cy Total ON-SITE REQUIRED = 94,000 cy DITCH BORROW = 33,300 cy ADDITIONAL BORROW-LO,700 cy 158 RECOMPACTED = 31,300 cy Consulting
Geotechnical Engineers SUBJECT VOLLEGAL OF LOCAL AND CHECKED JAS SHEET 1 OF 3 C-C' Area of Trach Fill = 1750ft2 Area of Top Fill= 1018ft2 D-D': Area of Trash Fill 472.5 ft2. Area of Tops Fill 498 ft2 B-B': Area of Trash File = 4033 ft2. Area of TOD File = 2018 ft2 E-E': Area of Trash Fill= 5488 ft2 Arez of Top Fill= 1380 ft2. F-F': Area of Trash File 448 ft2. Area of Top File 675 ft2 That A to Xsection F = 180' F-D- 97' D-C= 196' C-B= 207' B-E= 79' E-A'= 240' 150' TO PRACTICAL COLOR of FILL By TOPO. MAP Put A' Assume Are 2 = 7270 E 0 Consulting Geotechnical Engineers SUBJECT JOB TITLE & CLAUSE LAURE LAURE CHECKED SHEET TO OF THE The Walls 10 mme = (0+448)x1801 = 40,320 ft3 $$2 F = 448 fe^2$$ $D = 473 ft^2$ Volume= (440+473) 2971=44,669 ft3 Volume = (473 + 1758) x 196 = 218,638, Ft3 Volume= (4033+1758) × 207' = 599, 369 ft3 Volume= (4035+5482) × 79 = 376,080 ft3 Volume = (5488+2744) × 240'= 987,840 ft3 5488 \$ 150'= 411,600 FT3 > TOTAL VOLUME: 2,260ATG fe3-1,690,676 Fr3 83,989.9 yd3. Consulting Geotechnical Engineers NO. STATE JOB TITLE CHECKED SHEET 3 OF 3 でいたのなと 下文に Vaune = (675) x 180 = 60,750 ft3 Volume = (675+498) x 97 = 56.891 ft3 Volume = (48+1018) x196= 148,568 ft3 Volume = (1018+2018) ×2071=314,226 ft3 Volumes (2018+1380) x 79=134,221 ft3 Vaunue = (1380+150) × 250 = 248,400 ft3 151 Consulting Geotechnical Engineers | 16-022-88 | JOB TITLE IS THE LEARNING IN | DATE BY | |-----------|------------------------------|---------------------| | | | CHECKED AS SHEET OF | G-G' - Area of file materials = 10,540 fth O calculate from E-E" in 1974 E-E'- Total area of fill = 6868 Fti Distance from E -> CT = Z451. Volume = (10,540+6868) 245 = 2,132,480 fc3. Additional fix since 1974= VIREG-VIRIGITY > V1974 = 987, BAOFE 3 + 248, 400 FE3 = 1, 235, 840 Ft3 Vada file = 2,132,480-1,235,840 = 896,640 ft3. @ Calculate from G-G' to landfill face (H) Assume equal areas. Value = 10,540 x 30' = 316,200 ft3. @ Add two small sections - A? B Assume L' A surface 1 = 160' long = 2,219 ft2 20 | Ling = 45109.5ft2 Distance between = 401 800 Value 2219+110915 x 40 = 665201+3 158 | p. <u>6-08.1-66</u> JOB TITLE ! | English Company | DATE 5.15.75 BY_ | <u> </u> | |---|--|--|------------------| | r <u>itaria de Servicio.</u> | | CHECKED A SHEET | OF | | For Sharp or Control of the Trichands Ection | 3,000
3,326 - 2
1186 - 242 | - zs | | | Valence-= | 355,980 | | | | Total Additiona | 1 Volume fr | znu 1974-1986 | | | 475,000
355,980 | 316,200 ft3
516,200 ft3
506,590 ft3
2514,910 ft3
1,616,820 ft3 | | | | This does not in | at Face! (f | mer added
from E.E' west | | | Volumes on fide
trenches being fill
trenche by area | es resulted
led Calcula
of trench to | to from drain
te volume of
me Length o | age
of trench | | | | | | | Volume in trenche | er = 97,928 yd3 | | | | | | | | | | Total Vol | une Disposed | , 1974-1984 | | | | 157,810 9 | 7.1013 | | 1 1 | 10 July 1 7 7 7 1 | _ JOB_TITLE TO FI | orthickers | DATE <u>Sーマーそと</u> | <u> </u> | | |------------|-------------------|-------------------|------------|--------------------|----------|---| | | | | 1973 | CUECKED A SHEET | 2 05 | 4 | Auct = (12+(12-9.2)h= 14.8h b=2.12 Area of Trench = 2(126-h)+ Areat Atnowalete Perth tria = | 10.10-022-67 | JOB TITLE PETAL Landahing | DATE BY BY | |-------------------|----------------------------|---------------------| | SC LCT MANAGEMENT | was a property of the same | CHECKED JAS SHEETOF | DETOT OF TREUMINE ELECTROPIC of GISTORE EL MARKETINE AT THE TO MAN LOTTING OF THE FARE | | | | • | | |--|---|---|---|--| | Charles Co | DEFT | Arez | Vousance | ZVoluman | |
1+00
2+00
3+00
3+00
4+00
5+00
6-1+00
6-1+00
12+00
13+00
14+00
15+00
15+00
15+00
15+00
15+00
15+00
15+00
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+0000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+000
15+ | 12273472322221919191011111111111111111111111111 | 465.7
12000000000000000000000000000000000000 | 44, 460
11, 460
12, 600
126, 600
143, 400
143, 400
143, 400
143, 400
143, 400
143, 400
143, 400
143, 400
143, 400
166, 800
166, 800 | 214,560
214,826
214,826
452,826
589,726
589,726
1,300,626
1,300,326
1,801,626
1,801,626
1,801,626
1,801,626
1,801,626
2,097,126
2,097,126
2,195,326
2,195,326
2,287,366
2,287,366
2,287,366
2,324,516
2,453,3866
2,453,3866
2,644,046 | Total Volume in tranch: 2,644,0464 =97,928,463. Consulting Geotechnical Engineers | D. 1988 1987 | JOB TITLE TO THE SAME THE SAME THE SAME | DATEOATE | |--------------|---|-------------| | UcccCT | 1989-1989 1986-1989 | CHECKEDOFOF | MENTERS OF ALBERTAL (6-30-06-89). 1500 yd3 of disposal (Verbal from Rockwell). 24 més. x 2500 yd= 60,000 yd= Total Volume in Lanafiel from 1986-6188 = 157,810 159,940 yd3 + 60,000 yd3 = 219,940 yd3 Firme Disposed 6-88 to 6.89 (Date Disposal will End) 12 mas x 280 yd3 = 30,000 yd3 Total Volume that will have been disposed at Landfill as of 6/89 = 217,810 219,940 yd3 + 20,000 yd2 = 249,940 ADD ~ 10% For INTERIM COVER MATERIALS FROM 6/86-6/89 0.1 * 90,000 - 9,000 cg TOTAL VOLUME IN LANOFILL 256, BIO CY MOC 266.000 C-1 162 Consulting Geotechnical Engineers | 10 (a-037 - Bla | IOR TITLE RA | CKY FLATS - LAN | DATE 5/12/08 | BY_JAS . | |-----------------|--------------|-----------------|-------------------|----------| | SULLCT INFINITE | | | CHECKED GTJ SHEET | | PROBLEM: SLIDING RESISTANCE OF COVER Soils ON SYNTHETIC MEMBRANE ASSUME: SOIL HAS X=120pcf SOND LAYER \$230° SYNTHETIC MEMBRANE Effective \$ 13 TAN \$\Phi = 0.6 TAN\$ OR \$\Phi = 19° SOLUTION MAXIMUM Scope is 5:1 or MNi=0.2 F.S. = TAN DE/TAN i = 1.72 PROPOSED COVER HAS ADEQUATE FACTOR of SAFETY AGAINST SLIDING. SULCT COLER MEMBRANC YILLD CHECKED SHEET 2 OF 2 OR RESISTANCE. R = Z * 420 * TAN (19°) R. 289*/LIN. Fr. YIELD Force For 1 FOOT of MEMBRANE 13 70*/10 * 12 1/4 = 840*/LIN.F. THEREFORE THE LINER WOULD NOT BE ABLE TO REACH IT'S YEELD STRESS PRIOR SLIDING ACAINST THE SAND. | 5. 6-032-88 JOB TITLE Rocky Flats. | DATE | |--|--| | in I Justine Hydrology | CHECKED_K SHEET/_OF | | Area 1 = 17.75 in 2 x (299.15 ft) 2 x 43 | <u>.</u> | | Area 2: 10.49 × (299.15) 2 (43560) | · 71.55 acres | | Avea 3: 7.978, (299.11)2 (43560) | : 16,39 acres | | Area 4: (11.42)(299.15) (+350): | | | Area 5 = (6.48)(299.15)2 (43120)= | 13.31 acres | | Total Area - 111.18 acres | 5 . | | However, Area 4 is larger than ass. | and the second s | | Assume limits of landfill cov | ver (see fig. 2) | | | | | Total Area confributing to perim | ster ditches | | - 111.18 - total ar | land fill cover | | 83.74 acres. | | Chen & Associates Consulting Geotechnical Engineers 10. 6-032.88 JOB TITLE Rocky Flats DATE 5/1/88 BY EVE Turface hydrology CHECKED JAS SHEET 2 OF Distance A-C (kig 1) = A-D (lig 1) = 4500 At. Elwation Difference = 6038-5925 = 113 xt Aug. slope = 113 = 0.025 time of concentration for perimeter ditches: Le: 0.00013 (L) 0.17 (3) 0.385 = NUREH/CE-4620 ORNL /TH-10067 to = (0.00013) (4517) 0.77 (0.025) 0.385 = 0.35 hours = 21 minutes Rainfall Data From NOAA Atlas 2 Volume III - Colorado Region = 1 (fig. 19) Y,00 = 100 yr 1hr estimated value from regression equ X = 2-4r 6 hr value (fig 20) = 1.6 in X = 2-4r 24 hr value (fig 26) = 2.2 in X = 100-4r 6 hr value (fig 27) = 3.6 in X + = 100-4r 24 hr value (fig. 31) = 5.0 in. Z: elevation in hundreds of A = 60 Regression Equations, Table 11 p. 15 Y,00: 1.897 + 0.439 [(x3)(x3/x4)] - 0.008 Z Y100: 1.897+ (0.439)(3.6)(3.6)-(0.008)(60) Y100 = 2.55 inches. 169 Consulting Geotechnical Engineers 10. 6-032-88 JOB TITLE Rocky Flats DATE 5/11/88 BY BUB S. LCT JUIFACE HYDROLOGY CHECKED JOS SHEET 3 OF Assume 2 perimeter channels, one north of the other south of the land fill cover disclarging @ Pt. D & Pt C (see fig. 1) respectively) Each channel carrier 1/2 of total runnoff. Qtotal = CiA (Pational formula) L = intensity (in/hr) for L = 20 minutes. from NOAA allas table 12 - % of 1 hour rainfall for 20 min duration: 0.57 + $(\frac{5}{15})(0.79-0.57) = 0.643$. i = (0.643)(2.55 inches) x 1 20min x 60 min = 4.92 in/hr. from NUREGO reference (see attached) (tables 4.5, 4.6) C for Average infiltration rates - Cultivated Cover = 0.40 to 0.50 use C= 0.45 Qtotal = (0.45)(83.74)(4.92) - 185 cfs use Q = 100 cfs for preliminary design. | Engineers | Geotechnical | Consulting | |------------------|--------------|------------| | | | | SC -21 JOS FALS Hydrology 52 - 25 JOS TITLE 1645 CHECKED WYY SHEET BLA Y8 88/11/2 3TAO_ Hanning's Rougherst Coefficion torn Henderson, The attacked. Design of diversion chaunch. Armond them of (Bs. 1 - 1 - 0.035 Graffed chand (lough gives < Zin , VR = 5-10) Earth, some stones swells n: 0.025 Smcott 20,116, 110 1020 3 1.0,020 USE N= 0.025 for design. assume no channel armoring will be reguired. (channel slope may be reduced somewhat by execusting duque near v.s and) Average slope = 0.02 (along ground surface) USE slope = 0.02 to presiminary design. Summary of computer solution of mannings equation 1= 1.486 12 1/2 5 1/2 | 1.7 | f= 1 */ | 26.0 | ٤ | 5.21 | 750.0 | 20.0 | 001 | |--------------------|----------------------
---------------|-------|--------------|-------------------|---------|------------| | E 7 | 81.1 | 56.0 | Z | 5.21 | 520'0 | 20.0 | 001 | | 4.7 | 82.1 | ٤٥٠/ | ج | 0.01 | 7150.0 | 50.0 | 001 | | . 4.7 | E 6 1/ | 691 | Z | 0.01 | 7.50.0 | 20.0 | 001 | | 7.7 | 19 †'1 | 81-1 | E | 2.7 | 750,0 | 20. a | 001 | | 1.8 | 1.53 | +z.1 | 7 | ٠ ٧٠ ک | 520.0 | 20.0 | 00/ | | 0.8 | 691 | 881 | جے | ڪ | 250.0 | 20.0 | 001 | | 5 8 | 18.1 | 847 | Z | ع | 520.0 | 20.0 | 00/ | | | (+1) | (4 <i>f</i>) | | | | - | (510) | | Veloc: hy
(fps) | ניה: אינים
האף אף | wolf. | 2/0/c | Athiw mollod | . א
עשטייייטלג | , adols | Flow (cfs) | TO.1 Consulting Geotechnical Engineers 0. 6-032-88 JOB TITLE Focky Flats DATE 5/11/88 BY BV B. SUBJECT Surface Hydrology ____CHECKED_JAS_SHEET____S__OF__ Typical channel velocities in vange of 6 to 8 ft/see. from NUREG , naturial type Sandy bam sandy clay Max. Permissible Velocity St/sec. 2.5 - 2.8 (very compart) w/ well maintained brass lovers Erosion Revistant Soils 3 - 8 Easily - Erolled Soils. 2.5 - 6 Check use of rip rap armorment as afternative for high velocity. assume 1=0.035 Q = 100 cf3 side slope = 3:1 base width = 10 fact. from computer run (see attached) 7; = 1.25 ft. 7. = 1.51 using F.S method (see NURED reference) 5.F = cos & tand 7'tan & + sin & cos & 7=(21 To)((55-1)YD n'= 7[1+sin(1+0)] B = tan \[\frac{cond}{2 \sin \text{Sin } \text{D}}{7 \text{ tan } \text{d}} \] To = 8 * Slope x Dapth Consulting Geotechnical Engineers SU. I Surface Hydrology CHECKED 145 SHEET 6 OF along Bed: 0= tan 0.02 = 1.1458 \[\lambda: 90° = \B: 0° = \gamma'= \eta: D= 4.73 in (see printout) To = (1.25×62.4×0.02) = 1.56 psf 7- (21)(1.56) 16/A2 0.8879 (2.5-1)(12.4)(4.73)(1/2) 16/A2 0.8879 5. F = cod 1.1458 tan 40° 0.8879 tan 40° + sin 1.1458 cod 0° = /-/ (agraes w/ print out) along side slope Q = tan - 1 = 18,435°) = tan 10.02 = 1.1458° D= 6.05 in = 0.50+17 ft. 7 = (21)(1.56) = 0.6942 B = tan [2 3:0 18.435 + 5:0 1.1458] = 42.119° 71'= 0.6942 [1+ sin(1.1458 + 42.119)] = 0.58499 5. F = cos 18.435 tan 40° 0.58499 tan 40°+ sin 18.435° con 42.119° - 1.1 (agrees w/ printout) So rip rap w/ Dso = 6 in required to armor 10 A will Consulting Geotechnical Engineers | | . 10 | 6-032- | 88 IOR TITLE | Rochy Flats | DATE 5/11/58 BY BUB | |----------|------|---------|--------------|-------------|-----------------------| | | | | Hydrology | | CHECKED AS SHEET 7 OF | |) | LCT_ | JUITREE | MADORICAR | | CHECKEDSSITEETOI | Check Configuration of Land fill cover. assume top surface will be slopped toward middle to form a "V" channel which slopes downward toward the face of the cover at 1.5% slope prior to settlement of land Sill material. Area of surface = 14.1 acres (see fig 2) assume "C" for rational formula = 0.45 Determine time of concentration: Length of Lover = 1200 ft 5/ope = 0.015 tc: (0.00013) (1200) 0.77 (60): 9.23 minutes use te=10 min from NOAA altas telle 12 rainfall = 0.45 x 2.55 in = 1.1475 inclos = (1.1475)(to min) (to min) = 6.88 in/hr. Q-CiA: (0.43) 14.1)(6.88): 43.7 cfs. design for Q = 45 cfs. Consulting Geotechnical Engineers 7. 6-032-88 JOB TITLE Rocky Flats DATE 5/11/88 BY 8.13 SU. I Surface Hydrology > Lor mannings 1= 0.025 A = (/z)(84)(0.42) = 17164 P = 2 \100 +1 (0.42, = 84.0 R: 1/p = 0.210 = 23 = 0.35334 5= 0.015 => 51/2 = 0.12247 V = (1.486)(0.3533'(0.12247) - 2.57 ft/sec. 15 = VA = (17.64)(2.57) = 45.4. ok After settlement of land fill assume 20% settlement max deptt = 27 ft (see fig. 2) max diff. settlement = (0.2)(27) = 5.4 ft. assume differential settlement occurs to over lateral Listance of 100 ft. side slope: 15.6:1 Q= 70 (fs N= 0.025 5:1.5% A: (1/2)(24.25)(0.84) = 11.025 H2 assume flow desth = astft. P= 2/(154)2+1 (0.84): 26.24 H R: 0.4198 => R43: 0.5607 T'Z: 0.12247 1.486 W. - 1. - 1/2 122 1 = 1 102/4/500 Consulting Geotechnical Engineers | | 6-03z-88 | JOB TITLE Rocky | Flats | DATE 5/11/88 BY 8/8 | |--------|----------|-----------------|-------|---------------------| | SUL LT | | | | CHECKED SHEET 9 OF | With settlement of top surface projected increase in velocity from apprex 2.5 Stysee to approx 4 Stysee, which is less than maximum permissible velocity for very compact sandy clay and arrassed crosson Resistant soils Determine Requirements for Armoring Front Face of Land P.11. Assume maximum face slope of 5:1 (h:v) assume uniform flow of 45 cfs pread uniformly over lateral distance of 100 ft. determine rock requirements using factor of safety method and Ostephenson's method (see 7.48 of NUREG) | PR | IHARY | INPUT | " | | | - 081 | TPUT | | | 7, 1.672 | |---------|-------|----------|---------|--------|-------|--------------|-------|-------|-----|-------------------------| | | | | | BOT | CRIT. | FLOW | | TRACT | | | | FLOW | SLOPE | | į | WIDTH | DEPTH | DEPTH | VEL | FORCE | | | | G | 5 | Ð | Z | ь | Yε | Υf | Ā | To | | | | (cfs) | | | 1 | (ft.) | (ft.) | (ft.) | (fps) | (psf) | | | | 45.0 | 0 200 | 0.0400 |
A 1 | 100 0 | 0.18 | 0.11 | 7 9 | 1 78 | | | | D50B (i | | | | | V.10 | V.11 | J., | 1.30 | | - required alon | | | • | 8563674 | Ī | | | | | - | | - required alon | | RIP RAF | VOLUM | E (cu.ya | 1./f1 | t.)= 4 | .2318 | 13 | | | | tace | | RIP RAP | FACTO | R OF SAI | ETY: | = 1.25 | j | | | | ; | h. Ec mett | | RIP RAP | SPECI | FIC GRAV | /1TY= | = 2.5 | | | | |) : | by F.S meth
F.S=1.2. | | RIP RAP | FRICT | ION ANGE | _E= 4 | 40 | | | | | , ; | F (= 1, 2 | Consulting Geotechnical Engineers 10. 6-037-88 JOB TITLE Rocky Flats Surface Hydrology _____DATE 5/11/88 BY BVB _CHECKED_16 SHEET_____OF determine ruch requirements - stephenson niethod. Q= 45 cfs q= 45 cfs /100 ft = 0.45 cfs per foot w:074 @: tan " 0.2: 11.31° n: perocity: 0.4 5: specific gravity = 2.7 \$= 40° C= 0.25 3z.z assume flow concentration: 2.5 :0 use g: (0.45)(2.5): 1.125 Q - [g (tam @) 7/6 n 1/6 C g 1/2 [(1-n)(5-1) con Ø (tam d- tam Ø)] 5/3] - [(1.425)(0.15295)(0.8584) (0.25)(5.6745)[(0.6)(1.7)(0.98058)(0.63910)] 5/3] = [0.1477 = 0.364 At = 4.37 in mult. by oliver's const = 1. 15 contaroction d= (4.37) (1.5) = 6.5 inches. Use rock of median sige = 7 inches along face of 5/ope if slope flatter than 5:1 a reduction in mediam size can be allowed. ## Consulting Geotechnical Engineers Chen & Associates 10 6-032-88 JOB TITLE ROLLY FLAFT DATE 5/11/88 BY AVE tor 85 = 28 infect Le Nobel reference p. 87 Charle flow through rock doing front face: 14 86.0 = 0.98 + 11.74 in/sec = 0.98 Hg Thow within 10105 = (40 At 2)/0.98 Affects = 39,2 ets 2 +1 0 + = (4.0)(+1 001)(+1) = 50:01 xx1+ assume ulidiness = 12 inches & porocity = 0.4 , 87% of total. 18 INCHES 8.82 - (8P.) 5,700 · 20,0 V WITTIL WOLT CLETTIU CODY במית דמונצמפיב. 18" 181.001 18.05d sen Consulting Geotechnical Engineers | 9 2: | 6-032-88 J | OB TITLE Rocky | Flats DATE 5/11/88 BY BVB | |-------------|------------|----------------|---------------------------| | SUULECT | Surface | Hydrology | CHECKED AS SHEET // OF | Maximum Runoff to storage Tonds for 100 year storm assume runneff from top of cover and area 5 (fig. 1) Area = 14.1 acres + 13.31 acres = 27.4 acres 100 year 24 hour event = 5.0 inches (fig 31, NOAA) assume rundle coefficient = 1.0 (INFILTRATION IS OFFSET BY DEAINAGE! runoff : (1.0)(5)(1/12)(27.4) = 11.4 acre-fect Maximum Runoff rate to storage Pond - 100 year storm for duration of 5 min - % of 1 hour 100 yr went rainfall = 0.29 x 2.55 : 0.74 inches rate = (0.74) 1.01(27.4) (1/12) (43,560) H3 x I x / min 60 sec rate: 245 cfs. max. spillway capacity = 350 cfs. Consulting Geotechnical Engineers | 6. 037 - 88 JOB TITLE | Rolly Flats | DATE 5/19/88 BY 3/8 | |-----------------------|-------------|------------------------| | Sur Surface Hydrology | | CHECKED NS SHEET 12 OF | Flow along face of front slope, not carrying concentrated flow: | 5/ope (f+/f+) | length along slope (f) | That flow Yelout | |------------------------------|------------------------|------------------| | 0. 20 (5:1) | 245 | 2.2 ft/sec | | 0.1667 (6:1)
0.1429 (7:1) | 292
340 | 2.3 H/sec | | 0.1250 (8:1) | 387 | | | 0.1000 (10:1) | 482 | 2.4 At/sec. | * assumes Runoff Coeff. = 0.45 L = 6.88 in/hr Concentration Factor = 3.1 Check using Tributary Drainage Area Hethool (Nurey Ref. p. 31) D= 0.909 + 22.418 (5:) = 0.909 + 22.418 (0.20) D= 5.39 \frac{12}{ft} of channel Total area = (5.39)(245) = 1,320.6 pt = 0.0303 area Q = C:A = (0.45)(6.88)(0.0303) = 0.0939 cfs. with of channel = 5.4 ft assume 0.0939 cfs distributed for a unit flow ``` READ! Ē 0.335 danging a n = 0.025 4.025 0.025 Rational formula 0.7 ritati factor, Die 2.1 2.9 eutrall interacts (in/he/,) = £.38 ≟.29 8,88 5.88 ttt . Jenoží slong slage (ft. . E = 745 245 245 245 Slope elste (ft/ft), 5 = 9.1 0.2 erret flow reissity oft/ses; = 1.689921(2.229864) 0.075 0.025 0.025 rabring a f = 0.025 romoif factor. D = 0.7 1.4 . 2.1 2.3 rainfall intensity (in/hr), i = 6.88 5.88 5.88 5.88 total length along slope (ft.), L = 340 340 340 340 0.1429 slope (ft/ft), S = 0.1429 0.1429 0.1429 : 4 sheet flow velocity (ft/sec) = 1.741776/2.29828) 2.702967 3.032508 15 0.025 0.025 0.025 0.025 manning's n = 17 runoff factor, C = 2.1 2.8 0.7 1.4 18 rainfall intensity (in/hr), i = 6.88 5.88 5.89 6.88 total length along slope (ft.), L =- 482 482 482 482 slope (ft/ft), S = 0.1 19-May-88 11:48 PM - H21: 0.017684/H16^0.6#H20^0.3#(H17#H18#H19)^0.4 READY manning's n = 0.025 0.025 0.025 10 runoff factor, C = 0.7 1.4 2.1 11 rainfall intensity (in/hr), i = 88.8 6.88 6.88 6.88 340 -total length along slope (ft.), L = 340 340 13 slope (ft/ft), S = 0.1429 0.1429 0.1429 14 sheet flow velocity (ft/sec) = 1.741776 2.298287 2.702967 3.032608 15 16 manning's n = 0.025 0.025 0.025 0.025 17 runoff factor, C = 0.7 2.1 2.8 1.4 18 5.88 10:1 rainfall intensity (in/hr), i = 6.88 6.88 6.88 482 total length along slope (ft.), L = 482 482 482 | slope (ft/ft), S = 0.1 0.1 0.1 21 sheet flow velocity (ft/sec) = 1.799326 2.374225 .792276 3.132808 22 23 14 ``` Concentration .7-May-88 11:49 FM 181 25 25 27 1-027-88 Rochy
Flats **Consulting Geotechnical Engineers** > A = $(y \times 1)$ P = 1R = y $V = \frac{1.486}{n} R^{43} 5^{1/2}$ $Q = \frac{1.486}{n} R^{43} 5^{1/2} A = \frac{1.486}{0.025} y^{2/3} (0.2)^{1/2} y = 0.0939$ $Z6.582 y^{5/3} = 0.0939$ Y = 0.0338 $V = \frac{1.486}{0.025} (0.0338)^{2/3} (0.2)^{1/2}$ V = 2.78 R / sec. (compare w) 2.2 R / sec.Assuming Convents Follows 3 note slope length of 245 A is conservative. Final Maximum Slope 13 ABOUT 180 Fr. SO VELOCITIES CALCILLATED ARE CONSERVATIVE 3 2 & DAM PROFILE SCALE: HORIZ.- 1"-40" (LOOKING UPSTREAM) VERT- 1"-10" SURFACE AREA (ACRES) N.M.W.S. # 5921.0-5920 (FEET) 5926 (FEET) MAXIMUM WATER 5910 ELEVATION ELEVATION 5924 VOLUME 5900 SPILLWAY DISCHARGE 5922 N. M. W. S. 5890 219 5920 20 WHERE CAMBER TAPERS 30 40 50 0 VOLUME (ACRE-FEET) 100 200 300 400 RESERVOIR CAPACITY CHART DISCHARGE Q (C.F.S.) SPILLWAY DISCHARGE CURVE SCALE : 1" 100' - HORIZ. "As Built", Per Construction ATC29-2)3508 12-28-74 ORIGINAL ISSUE 1801 SERCES THE 3456K Note: LEC DATE Elevations shown are approximate 2 and were not verified after construction unless noted otherwise. N. C. ATOMIC BELLEY COMMISSION R.L.H. 7/29/74 STORY FLATS META OFFICE COLDER COLDENSO ZEFT, COGORNO & SEALY INC. TRI-CONSTRUCTOR TRIAD LTD. Q.E.C 7/01/74 REVIEWED FOR GLASSIFICATION 7/29/24 1/29/24 SANITARY LANDFILL RENOVATIONS SAMPLING STRUCTURE ARC CONT. NO. PLAN, PROFILE & SECTIONS-DAM AT29-2)344 7/21/74 HAL AS SHOWN 1/29/74 27318-2 8 00P0 180-186/2 ------007PUT---------PRIMARY INPUI----BOT CRIT. FLOW SLOPE WIDTH DEPTH DEPTH VEL FORCE z b Yc Yf v To (cfs) (ft.) (ft.) (ft.) (fps) (psf) 100.0 0.020 0.0350 3 5.0 1.67 1.63 6.2 1.97 50B (in.)= 6.174527 D50S (in.) = 7.900553 RIP RAP VOLUME (cu.yd./ft.)= 1.36556 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION ----PRIMARY INPUT----------DUTPUT------BOT CRIT. FLOW FLOW SLOPE WIDTH DEPTH DEPTH VEL FORCE Q S n z b Yc Yf v To (cfs) (ft.) (ft.) (ft.) (fps) (psf) 100.0 0.020 0.0350 3 7.5 1.45 1.41 6.0 1.71 D50B (in.)= 5.350492 D50S (in.) = 6.846166 RIP RAP VOLUME (cu.yd./ft.)= 1.20429 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION BOT CRIT. FLOW TRACT FLOW SLOPE WIDTH DEPTH VEL FORCE B S n z b Yc Yf v To (cfs) (ft.) (ft.) (ft.) (fps) (psf) 100.0 0.020 0.0350 3 10.0 1.28 1.25 5.8 1.51 D508 (in.) = 4.72793 D505 (in.) = 6.049574 RIP RAP VOLUME (cu.yd./ft.) = 1.09548 RIP RAP FACTOR OF SAFETY = 1.1 RIP RAP SPECIFIC GRAVITY = 2.5 RIP RAP FRICTION ANGLE = 40 A: (14.78+5)(1/2)(1.63): 16.121 4^{2} P: $5+2\sqrt{10}(1.63)$: 15.309R: A: 1.0530 \Rightarrow $R^{V3}: 1.0350$ V: 1.486 R^{V3} $5^{1/2}$: 1.486 $(1.0350)(0.02)^{1/2}$ V: 6.2 A/secD: VA = (6.2)(16.121) = 100.2 cfs. ``` 100.0 0.020 0.0250 .2 10.0 1.33 1.07 7.7 1.29 D50B (in.) = 4.052269 D50S (in.) = 7.834827 JP RAP VOLUME (cu.yd./ft.)= 1.248731 RAP FACTOR OF SAFETY= 1.1 RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION ----PRIMARY INPUT---- ------OUTPUT----- BOT CRIT. FLOW . TRACT WIDTH DEPTH DEPTH VEL FORCE FLOW SLOPE Yf v To · 8 z b Ϋ́ς ŋ (ft.) (ft.) (ft.) (fps) (psf) (cfs) 100.0 0.020 0.0250 3 10.0 1.28 1.03 7.4 1.25 D508 (in.)= 3.927078 D50S (in.) = 5.024853 RIP RAP VOLUME (cu.yd./ft.)= .8742856 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION -----OUTPUT----- ----PRIMARY INPUT---- BOT CRIT. FLOW WIDTH DEPTH DEPTH VEL FORCE FLOW SLOPE Ð z b Yc Yf (ft.) (ft.) (ft.) (fps) (psf) (cfs) 100.0 0.020 0.0250 2 12.5 1.18 0.95 7.3 1.14 050B (in.)= 3.590287 D50S (in.)= 6.941612 RIP RAP VOLUME (cu.yd./ft.)= 1.124203 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION -----OUTPUT----- ----PRIMARY INPUT---- BOT CRIT. FLOW WIDTH DEPTH DEPTH VEL FORCE FLOW SLOPE Q S Υc Yf ٧ n z b (ft.) (ft.) (ft.) (fps) (psf) 100.0 0.020 0.0250 3 12.5 1.14 0.92 7.1 1.12 DSOB (in.) = 3.51013 D50S (in.) = 4.49135 RIP RAP VOLUME (cu.yd./ft.) = .8139041 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE = 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION -----OUTPUT----- ----PRIMARY INPUT---- BOT CRIT. FLOW WIDTH DEPTH DEPTH VEL FORCE FLOW SLOPE 0 S b ٧c ٧÷ Z (ft.) (ft.) (ft.) (fps) (psf) (cfs) ``` 100.0 0.020 0.0250 3 15.0 1.04 0.84 6.8 1.02 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION 100.0 0.020 0.0250 3 20.0 0.88 0.72 5.3 0.87 D50B (in.)= 2.71B449 D50S (in.) = 3.478364 RIP RAP VOLUME (cu.yd./ft.) = .7236023 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 # MANNING'S EQUATION AND CRITICAL FLOW EQUATION | TRACT | 67.73 | TRACT
FORCE
To
(psf) | 1.67 | |--|--|---|--| | VEL F
(+05) (| 1.48 8.5
95
FLOW EQUATION | | 8.0 | | FLOW
DEPTH
YE
(FL.) | 3 | FLOW
DEPTH VE
Yf v
(ft.) (fp | 88
. 38 | | CR11.
DEPTH
YC
(ft.) | .0 1.81
-1.748995
-1 | CRIT.
DEPTH
YC
(ff.) | 1.67 | | BOT
WIDTH
b
(fft.) | Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | BOT
HIDTH
b
(ft.) | 5.0 | | 14 | | | 0 3
5
5
8
8
8
8
1 | | æ | 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | - Inex | 0 2 9 | | ע אר אנים אנים (S אנים S מים מ | 0.0 0.020 0.1 (in.) = 5.61 (in.) = 5.61 (in.) = 10.8 (app Factor of Rap Specific Rap Friction Manning's Eu | PRIMARY 1N2UT
DW SLOPE
B S n
fs) | 0.020
1.)= 5.
1.)= 6.
VGLUME
FACTOR
SPECIF | | FLOW 0 | 100.0
DSOB (in
DSOS (in
RIP RAP
RIP RAP
RIP RAP | FLOW B (cfs) | 100.0
0508 (in
0508 (in
0508 (in
RIP RAP
RIP RAP
RIP RAP | TRACT FORCE (psf) ,0 (fbs) -DUTPUT-(ft.) (ft.) (ft.) WIDTH DEPTH DEPTH CRIT. FLOW * ۳ **B01** -----PRIMARY INPUT-SLOPE Ø (c { s}) 1.50 8.7 1.53 7.5 100.0 0.020 0.0250 0508 (in.) = 4.689267 0505 (in.)= 9.066426 RIP RAP VOLUME (cu.yd./ft.)= 1.439325 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION | | TRACT | FORCE | ္ | (þsé) | 1 | 1.43 | |---------------|------------|---------------|------------|-------------------------------|---|------------------------| | PUT | | 뙲 | > | (£b2) | ; | 7.7 | | 0UTPUT | FLOW | DEPTH | **-
**- | (ft.) (ft.) (ft.) (fps) (psf) | ! | 7.5 1.45 1.18 7.7 1.43 | | | CRIT. FLOW | WIDTH DEPTH ! | Ϋ́c | (ft.) | - | 1.45 | | | 801 | #101# | ع | (ft.) | | ٠٠.
س | | | | | 7-J | | } | 1.0 | | PRIMARY INPUT | | | C: | | | 100.0 0.020 0.025 | | LMARY | | SLOPE | æ | | | 0.020 | | Ad | | FLOW | C | (E+E) | 1 | 100.0 0.020 0.0250 | IP RAP VOLUME (cu.yd./ft.)= .9636738 D50B (in.)= 4.476967 950S (in.)= 5.728456 RIP RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC GRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 MANNING'S EQUATION AND CRITICAL FLOW EQUATION 10.92 S 5+215 (1.48): 11.62 (15.92)(12)(1.48): 48 = 1.0092 1.0139 . ن : 8.48 A/se 1.486 (1.0092) \.02 Q: VA: (11.78)(8.48) - 99.9 cf. #### MANAINS'S EQUATION AND CRITICAL FLOW EQUATION | | IMARY | INPUT | | TU9TUC | | | | | |------------|-------|-------|---|--------|-------|-------|-------|-------| | | | | | 90T | CRIT. | FLOW | | TRACT | | FLOW | SLOPE | | | WIDTH | DEPTH | DEPTH | VEL | FORCE | | 70 | S | n | 2 | b | Ϋ́ς | Yf | ٧ | Ĭo | | (0
cfs) | | | | (ft.) | (ft.) | (ft.) | (fps) | (psf) | | | | | | | | | | | 100.0 0.020 0.0250 3 30.0 0.49 0.57 5.6 0.49 D508 (in.)= 2.153919 D508 (in.)= 2.756024 RIP RAP VOLUME (cu.yd./ft.)= .6874994 RIF RAP FACTOR OF SAFETY= 1.1 RIP RAP SPECIFIC BRAVITY= 2.5 RIP RAP FRICTION ANGLE= 40 Reférence NURES/CR-4620 ORNL/TH-10067 Fig. 4.12. Manning's coefficient for riprap. Source: SCS, 1975. that a conservative value of C be applied for PMF estimation since infiltration and storage comprise a low percentage of the runoff. Furthermore, the C values presented were derived for storms of 5-100 year frequencies. Therefore, less frequent, higher intensity storms will require the use of a higher C value (Chow, 1964). It is recommended that a runoff coefficient of 1.0 be used for PMF applications in very small watersheds since the effects of localized storage and infiltration will be small. Table 4.5. Values of C for Use in Rational Formula. | | Watershed Cover | | | | | |---|-----------------|---------|-----------|--|--| | Soil Type | Cultivated | Pasture | Woodlands | | | | With above-average infiltration rates; usually sandy or gravelly | 0.20 | 0.15 | 0.10 | | | | With average infiltration rates; no clay pans; loams and similar soils | 0.40 | 0.35 | 0.30 | | | | With below-average infiltration rates;
heavy clay soils or soils with a clay
pan near the surface; shallow soils
above impervious rock | 0.50 | 0.45 | 0.40 | | | Source: Chow, 1964. <u>}</u>: ## 4.8.2 Rainfall Intensity In order to determine the rainfall intensity, i, the time of concentration, t, must be estimated. The time of concentration can be approximated by: (a) Applying one of the many accepted empirical formulae such as $$t_{c} = 0.00013 \frac{L^{0.77}}{S^{0.385}}$$ (4.44) where L is the length of the basin in feet measured along the watercourse from the upper end of the watercourse to the drainage basin outlet and S is the average slope of the basin. Time of concentration is expressed in hours. This procedure is not applicable to rock covered
slopes. This expression was Table 4.6. Values of runoff coefficient C. | | Runoff C | oefficients | |--|------------------------|--------------| | Character of Surface | Range | Recommended | | Pavementasphalt or concrete | 0.70-0.95 | 0.90 | | Gravel, from clean and loose to clayey and compact | 0.25-0.70 | 0.50 | | Roofs | 0.70-0.95 | 0.90 | | Lawns (irrigated) sandy soil | · | | | Flat, 2 percent | 0.05-0.15 | 0.10 | | Average, 2 to 7 percent | 0.15-0.20 | 0.17 | | Steep, 7 percent or more | 0.20-0.30 | 0.25 | | Lawns (irrigated) heavy soil | | | | Flat, 2 percent | 0.13-0.17 | 0.15 | | Average, 2 to 7 percent | 0.18-0.22 | 0.20 | | Steep, 7 percent | 0.25-0.35 | 0.30 | | Pasture and non-irrigated lawns Sand | | | | Bare | 0.15-0.50 | 0.30 | | Light vegetation | 0.10-0.40 | 0.25 | | Loam
Bare | 0.20-0.60 | 0.40 | | Light vegetation | 0.10-0.45 | 0.30 | | Clay
Bare | 0.30-0.75 | 0.50 | | Light vegetation | 0.20-0.60 | 0.40 | | Composite areas | | | | Urban | | | | Single-family, 4-6 units/acre | 0.25-0.50 | 0.40 | | Multi-family, >6 units/acre | 0.50-0.75 | 0.60 | | Rural (mostly non-irrigated lawn area) | | | | <1/2 acre - 1 acre | 0.20-0.50 | 0.35 | | 1 acre - 3 acres | 0.15-0.50 | 0.30 | | Industrial | | , | | Light | 0.50-0.80 | 0.65 | | Heavy
Business | 0.60-0.90 | 0.75 | | Downtown | 0.70.0.05 | 0.00 | | Neighborhood | 0.70-0.95
0.50-0.70 | 0.85
0.60 | | Parks | 0.10-0.40 | 0.80 | | ·wing | 0.10-0.40 | U•2U | Source: ASCE, 1970 and Seelye, 1960. 192 Table 4.7. Maximum permissible velocities in erodible channels. | | Water Transporting
Colloidal Silts | |---------------------------------------|---------------------------------------| | Channel Material | v (ft/sec) | | Fine sand, colloidal | 2.50 | | Sandy loam, non-colloidal | 2.50 | | Silty loam, non-colloidal | 3.00 | | Alluvial silts, non-colloidal | 3.50 | | Firm loam | 3.50 | | Volcanic ash | 3.50 | | Stiff clay, colloidal | 5.00 | | Alluvial silts, colloidal | 5.00 | | Shales and hardpans | 6.00 | | Fine gravel | 5.00 | | Graded loam to cobbles, non-colloidal | 5.00 | | Graded silts to cobble, colloidal | 5.50 | | Coarse gravel, non-colloidal | 6.00 | | Cobbles and shingles | 5.50 | Source: Lane 1955. Table 4.8. Maximum allowable velocities in sand-based material. | | Velocity | | | |--|--|--|--| | Material | (ft/sec) | | | | Very light sand of quicksand character Very light loose sand Coarse sand to light sandy soil Sandy soil Sandy loam Average loam, alluvial soil, volcanic ash Firm loam, clay loam Stiff clay soil, gravel soil Coarse gravel, cobbles and shingles Conglomerate, cemented gravel, soft slate, tough hardpan, soft sedimentary rock | 0.75 to 1.00
1.00 to 1.50
1.50 to 2.00
2.00 to 2.50
2.50 to 2.75
2.75 to 3.00
3.00 to 3.75
4.00 to 5.00
5.00 to 6.00 | | | Source: Lane, 1955. Therefore, the permissible velocities developed for channels is usually extended to overland flow situations. When design velocities reach or exceed those indicated in Tables 4.7 through 4.10, protection is warranted. Table 4.9. Limiting Velocities in Cohesive Materials. | | Compactness of Bed | | | | | |--------------------------------|----------------------|----------------------|----------------------|----------------------|--| | | Loose | Fairly
Compact | Compact | Very
Compact | | | Principle Cohesive
Material | Velocity
(ft/sec) | Velocity
(ft/sec) | Velocity
(ft/sec) | Velocity
(ft/sec) | | | Sandy clay | 1.48 | 2.95 | 4.26 | 5.90 | | | Heavy clayey soils | 1.31 | 2.79 | 4.10 | 5.58 | | | Clays | 1.15 | 2.62 | 3.94 | 5.41 | | | Lean clayey soils | 1.05 | 2.30 | 3.44 | 4.43 | | Source: Lane, 1955. The materials presented in Tables 4.7 through 4.9 can be referenced to the Unified Soil Classification System as presented by Wagner (1957). An engineering analysis of the cover material can provide an approximation of the permissible velocities that the alternative cover materials may withstand without supplemental protection. #### 4.11 PERMISSIBLE VELOCITY EXAMPLE A tailings disposal site located in the northwest corner of New Mexico has prepared a reclamation plan for review. The reclamation plan indicates that a 10 foot thick cap will be placed atop the tailings at a slope of 2.4% with a compaction of 95% of optimum. The cap will be graded as shown in Figure 4.14 and shall transition into side slopes of 1V:10H. It is proposed that the cap will be composed of a sandy clay with a coarse gravel cover. Along the crest, a 12 inch thick layer of riprap will be placed for at least 8 feet upslope and downslope of the crest to stabilize the transition. The riprap will have a median stone size of 6 inches. The gravel cover will have a median rock size of 1.5 inches. The design reviewer must verify that the gravel cover will resist the potential velocities that may result on the cap. Table 4.10. Maximum Permissible Velocities in Feet per Second (fps) for Channels Lined With Uniform Stands of Various Well-Maintained Grass Covers. | | Maximum Permissible Velocities ^a | | | | | | |--|---|-----------------------------|------------------------|--|--|--| | Cover | Slope Range | Erosion-
Resistant Soils | Easily-Eroded
Soils | | | | | Bermudagrass } | 0-5
5-10
Over 10 | 8
. 7
. 6 | 6
5
4 | | | | | Buffalograss | 0-5 | 7 | 5 | | | | | Kentucky bluegrass | 5-10 | 6 | 4 | | | | | Smooth brome | | 5 | 3 | | | | | Blue grama ^b | 0-5 | 5 | 4 | | | | | Grass mixture ^b } | - { 5 - 10 | 4 | 3 | | | | | Lespedeza sericea Weeping lovegrass | • | | | | | | | Yellow bluestem ^C Kudzu Alfalfa Cook pooces | 0-5 | 3.5 | 2.5 | | | | | Crabgrass Common lespedezac,d Sudangrassd | 0-5 | 3.5 | 2.5 | | | | ^aUse velocities over 5 fps only where good covers and proper maintenance can be obtained. Source: SCS, 1984. $^{^{\}mathrm{b}}\mathrm{Do}$ not use on slopes steeper than 10 percent. $^{^{\}mathrm{C}}$ Use on slopes steeper than 5 percent is not recommended. ^dAnnuals are used on mild slopes or as temporary protection until permanent covers are established. From Open channel F. F.M. Henderson 99 McH: Han Publish to give the result THE RESISTANCE EQUATION Feq. (4-23) should be reduced by a factor of the sixth root of a number between two and three—i.e., by between 10 and 20 percent. The effect is to make the agreement between the two equations even closer than it appears We conclude that there is a remarkably close correspondence between Eq. (4-11), based initially on quite small-scale pipe experiments (Nikuradse's largest pipe was 21 in. in diameter), and the Manning and Strickler equations, based on quite large-scale field observations. It follows that the Manning equation is suitable for all fully rough flow, although there will be a range of intermediate channel sizes for which Eq. (4-11) is equally suitable, within mormally acceptable limits of accuracy. For transition flow, as described by Eq. (4-13), the Manning equation is no longer suitable, unless the coefficient is recognized as dependent on Re, as in Fig. 4-5 (see notes on Table 4-2); the boundary between transition flow and fully rough flow is given by Eq. (4-16), and may conveniently be expressed in terms of the Manning equation parameters. Equations (4-14), (4-16), and (4-22) may be combined (Prob. 4.3) (4-20) [Ch. 4 a further con- le, adjustments closely to Eq. increasing the : varnish used s representing line having a (4-21) : ((4-21).Eq. (4-21) as oncrete tht on itable er to indicate $n^6 \sqrt{RS_f} \ge 1.9 \times 10^{-13}$ (4-24)for fully rough flow. If this inequality is true the Manning equation is applicable. Typical values of the coefficient n are listed in Table 4-2. ## TABLE 4-2 Values of Manning's Roughness Coefficient n | Glass, plastic, machined metal | | • • | • • | • • | • • | 0.010 | |------------------------------------|-----|-----|-----|-----|--------------|-------------------| | Dressed timber, joints flush . | | | | | | 0.011 | | Sawn timber, joints uneven | | | | | | 0.014 | | Cement plaster | | | | | | 0.011 | | Concrete, steel troweled | | | | | | 0.012 | | Concrete, timber forms, unfinished | ١ | | | | | 0.014 | | Untreated gunite | | | | | | 0.015-0.017 | | Brickwork or dressed masonry . | | | | | | 0.014 | | Rubble set in cement | | | | ٠. | | 0.017 | | Earth, smooth, no weeds | | | | | | 0.020 | | Earth, some stones and weeds | | | | | | 0.025 | | Natural river channels: | | | | | | | | Clean and straight | | | | | | 0.025-0.030 | | Winding, with pools and shoals | | | | | | 0.033-0.040 | | Very weedy, winding and overgr | own | | | | | 0.075-0.150 | | Clean straight alluvial channels | | | | | | $0.031d^{1/6}$ | | <u>.</u> | | | | | $(d=\Gamma)$ |)-75 size in ft.) | Notes on Table 4.2 When a single value of n is given in the table, it is the mean value of a range of approximately ± 0.001 . The categories such as "clean straight river (4-22) indently pro- (4-23) i even closer -bed streams the effective two or -lence sient Conditi Other **thi**s mi channels" described at the end of the table clearly cover such a wide range of conditions that some field experience is desirable before a value of n can be estimated with reasonable confidence. However, the photographs given by Ven Te Chow [6] form a useful supplement to, or even substitute for, field experience. The last entry in the table gives the result
of Eq. (4-22), applicable mainly to alluvial channels of coarse noncohesive gravel or cobbles (known as *shingle* in British countries). The D-75 size may be taken as a good approximation to the value of d (larger than the median) with which the bed tends to become armored. The reader will easily be able to verify that the values of k_s in Table 4-1 are generally consistent, via Eq. (4-22), with the above values of n. When the channel bed and banks are thickly covered with vegetation an appreciable part of the flow takes place through the vegetation at low velocities. If the growth is of fine material such as grass the Reynolds number Re defined with respect to the stalk thickness will be low, and the resistance, and therefore the Manning n, will be dependent on Re. Since n will therefore depend on the velocity, it may possibly depend on Re defined with respect to the channel size as well as with respect to the stalk thickness. This has been shown to be true by the experiments of the U. S. Soil Conservation Service [3]; Figure 4-5. The Behavior of Manning's n in Grassed Channels their results, for a number of North American grass species, are summarized in Fig. 4-5. The division into classes depends mainly on the length and the "stand"—i.e., the vigour and thickness of growth, according to the following table: [Ch. 4 TABLE 4-3 | | Class | | | | | |-------------------------|------------|------------|--|--|--| | Average length of grass | Good stand | Fair stand | | | | | More than 30 in. | Α | В | | | | | 11-24 in. | В | С | | | | | 6-10 in. | С | D | | | | | 2-6 in. | D | D | | | | | less than 2 in. | E | E | | | | Wide shallow grassed channels are a popular solution to the problem of passing large discharges down steep slopes without developing unduly high relocities. pove values of n. vered with vegetation an alues of k, in Table 4-1 cover such a wide range e before a value of n can r, the photographs given), or even substitute for, (4-22), applicable mainly if or cobbles (known as taken as a good approxivith which the bed tends rered with vegetation an vegetation at low velohe Reynolds number Re the resistance, and n will therefore R led with respect thickness. This has been conservation Service [3]: assed Channels length and the the following ## Uniform Flow: Its Computation and Applications Significance of Uniform Flow Uniform flow has now been defined and a dynamic equation developed the Manning equation—which adequately describes both uniform and nonuniform flow. irregular. Even in artificial channels of uniform section, the occurrence of uniform flow may be relatively infrequent because of the existence of controls, such as weirs, sluice gates, etc., which dictate a depth-discharge relationship different from that appropriate to uniform flow. However, uniform flow is a condition of such basic importance that it must be considered in all channel-design problems. For example, if it is proposed to instal certain controls in an irrigation canal it is necessary to compare their depth-discharge relation with those of uniform flow; as we shall see, the whole character of the flow in the canal will depend on the form this comparison takes. Again, if a canal is to be laid on a certain slope, is to have a lining of a certain coefficient n, and is to take a certain discharge, then the uniform-flow condition is the criterion governing the minimum cross-sectional area required. Other criteria may of course determine that the section must be greater than this minimum, but the section cannot conceivably be any smaller or the canal will be unable to take the required discharge. ## Economical Design of a Channel Cross Section A typical uniform-flow problem in the design of artificial canals is the economical proportioning of the cross section. A canal having a given Manning coefficient n and slope S_0 is to carry a certain discharge Q, and 198 Consulting Geotechnical Engineers | 06-032-88 | JOB TITLE | Rocky | FLATS. LA | NO FILL DATE 3/13 | /88 BY_ |)as | |------------------|-----------|-------|-----------|-------------------|---------|-----| |
JE STIMATION | | | | | , | | PROBLEM HELP computer model uses AN EFFECTIVE TO FOR SYNTHETIC MEMBRANES TO EVALUATE INFILTRATION SOURTION LANDFILL AREA 15 230,000 FT2 WORST CASE - MEMBRANES ARE LAID SIDE BY SIDE WITH NO SERMING AND AN AVERAGE OF 0.1" GAP BETWEEN SHEETS 230,000 FT / 3000 FT / 2000 ST = 77 ROLLS GAP/ROLL 130' + 0.1" = 1.083 FT2 no ECC. MENT 12 77.1.0834-2/ Zod 10.6-032-88 JOB TITLE ROCK-, FLATS-LANDFILL DATE 5/13/88 BY JAS SECTESTIMATION OF FMIL EFF. CIENCY CHECKED ST SHEET Z OF Z CONSERVATIVE ESTIMATE Assume EVEN AFTER VISUAL INSPECT 1' PCR 100' of SEAM HAS A HAIRLINE (0.01") GAP OR TOTAL OPENINA OF 77 * 130 * 0.01 = 100.1 FT of Defeat 100.1 * 0.01" = 0.083 FTZ TOTAL OPENINA Efficiency is 0.0839/230,000 4-2 = 0.000036% GUNDLE HOPE - / POLL 22.5'x 840' ASSUME 22 x 840' w/seum overlap 00 18,480 ft 2/ROLL 230,000 A2/ = 12,45 ROUS /18,480 f+2/ROU Seam LENGTN/ROLL = 840+22 = 862' LENGTH OF DEFECT: 12.45 * 862 * 0.01=107.3" TOTAL OPENING: 107.3 * 0.01" = 0.089 ft REFICIENCY IS 0.089 ft2/ 201 Existing Cover Rocky Flats - Present Landfill May 26, 1988 #### FAIR GRASS ## LAYER 1 VERTICAL PERCOLATION LAYER THICKNESS = 36.00 INCHES EVAPORATION COEFFICIENT = 3.100 MM/DAY**0.5 POROSITY = 0.4292 VOL/VOL FIELD CAPACITY = 0.2718 VOL/VOL WILTING POINT = 0.1840 VOL/VOL EFFECTIVE HYDRAULIC CONDUCTIVITY = 0.04950000 INCHES/HR ## LAYER 2 WASTE LAYER THICKNESS = 300.00 INCHES EVAPORATION COEFFICIENT = 3.300 MM/DAY**0.5 POROSITY = 0.5200 VOL/VOL FIELD CAPACITY = 0.3200 VOL/VOL WILTING POINT = 0.1900 VOL/VOL EFFECTIVE HYDRAULIC CONDUCTIVITY = 0.28299999 INCHES/HR ## GENERAL SIMULATION DATA SCS RUNOFF CURVE NUMBER = 76.21 TOTAL AREA OF COVER = 383000. SQ. FT EVAPORATIVE ZONE DEPTH = 5.00 INCHES EFFECTIVE EVAPORATION COEFFICIENT = 3.100 MM/DAY**0.5 UPPER LIMIT VEG. STORAGE = 2.1460 INCHES INITIAL VEG. STORAGE = 1.1395 INCHES CLIMATOLOGIC DATA FOR DENVER **COLORADO** ## MONTHLY MEAN TEMPERATURES, DEGREES FAHRENHEIT | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |---------|---------|---------|---------|---------|---------| | 28.90 | 30.56 | 37.46 | 47.76 | 58.69 | 67.33 | | 71.35 | 69.69 | 62.79 | 52.49 | 41.56 | 32.92 | ## MONTHLY MEANS SOLAR RADIATION, LANGLEYS PER DAY | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |---------|---------|---------|---------|---------|---------| | 218.56 | 274.45 | 355.05 | 438.77 | 503.16 | 530.98 | | 514.77 | 458.88 | 378.28 | 294.57 | 230.17 | 202.35 | #### LEAF AREA INDEX TABLE | DATE | LAI | |------|------| | | | | 1 | 0.00 | | 124 | 0.00 | | 140 | 0.31 | | 156 | 0.51 | | 172 | 0.51 | | 188 | 0.51 | | 205 | 0.51 | | 221 | 0.51 | | 237 | 0.46 | | 253 | 0.33 | | 269 | 0.16 | | 285 | 0.09 | | 366 | 0.00 | #### POOR GRASS WINTER COVER FACTOR = 0.30 ****************** | JAN/JUL | FFR /AUG | WAR/SED | APR/OCT | MAY/NOV | JUN/DEC | |---------|----------|---------|---------|---------|---------| | JAN/JUL | reb/AUG | MAR/SEF | AFR/UCI | MAI/NUV | JON/DEC | | | | • | | | |--|---|--|---|--| | | | | | 1.39
0.35 | 0.000 | | 0.000
0.010
0.421
1.695
0.0009
0.1788 | 2.19 1.17 0.000 0.000 0.010 0.093 0.421 0.505 1.695 0.845 0.0009 0.0001 0.1788 0.5188 0.000 0.000 | 2.19 1.17 0.67 0.000 0.000 0.005 0.010 0.093 0.000 0.421 0.505 0.853 1.695 0.845 0.567 0.0009 0.0001 0.0725 0.1788 0.5188 0.0489 0.000 0.000 0.000 0.000 0.000 0.000 | 2.19 1.17 0.67 0.89 0.000 0.000 0.005 0.000 0.010 0.093 0.000 0.000 0.421 0.505 0.853 1.353 1.695 0.845 0.567 0.560 0.0009 0.0001 0.0725 0.3193 0.1788 0.5188 0.0489 0.1234 0.000 0.000 0.000 0.000 | 2.19 1.17 0.67 0.89 0.94 0.000 0.000 0.005 0.000 0.007 0.010 0.093 0.000 0.000 0.000 0.421 0.505 0.853 1.353 1.403 1.695 0.845 0.567 0.560 0.713 0.0009 0.0001 0.0725 0.3193 0.3711 0.1788 0.5188 0.0489 0.1234 0.2708 0.000 0.000 0.000 0.000 0.000 | ******************** | AVERAGE ANNUAL TOTALS FOR 74 THE | ROUGH 18 | | | | |-----------------------------------|----------|-----------|---------|---| | | (INCHES) | (CU. FT.) | PERCENT | | | PRECIPITATION | 12.99 | 414661. | 100.00 | _ | | RUNOFF | 0.202 | 6451. | 1.56 | | | EVAPOTRANSPIRATION | 10.572 | 337417. | 81.37 | | | PERCOLATION FROM BASE OF LANDFILL | 2.2573 | 72044. | 17.37 | | | DRAINAGE FROM BASE OF LANDFILL | 0.000 | 0. | 0.00 | | | | (INCHES) | (CU. FT.) | |-----------------------------------|----------|-----------| | PRECIPITATION | 1.79 | 57130.8 | | RUNOFF | 0.436 | 13909.7 | | PERCOLATION FROM BASE OF LANDFILL | 0.0848 | 2706.6 | | DRAINAGE FROM BASE OF LANDFILL | 0.000 | 0.0 | | HEAD ON BASE OF LANDFILL | 0.0 | | | SNOW WATER | 0.63 | 20198.8 | | MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.3867 | | | MINIMUM VEG. SOIL WATER (VOL/VOL)
 0.1815 | | ******************************* Proposed Cover Rocky Flats - Present Landfill May 26, 1988 #### FAIR GRASS ## LAYER 1 VERTICAL PERCOLATION LAYER THICKNESS = 6.00 INCHES EVAPORATION COEFFICIENT = 5.000 MM/DAY**0.5 POROSITY = 0.5110 VOL/VOL FIELD CAPACITY = 0.3010 VOL/VOL WILTING POINT = 0.1840 VOL/VOL EFFECTIVE HYDRAULIC CONDUCTIVITY = 0.99000001 INCHES/HR ## LAYER 2 VERTICAL PERCOLATION LAYER THICKNESS = 30.00 INCHES EVAPORATION COEFFICIENT = 3.100 MM/DAY**0.5 POROSITY = 0.3898 VOL/VOL FIELD CAPACITY = 0.2893 VOL/VOL WILTING POINT = 0.2000 VOL/VOL EFFECTIVE HYDRAULIC CONDUCTIVITY = 0.00420000 INCHES/HR ## LAYER 3 LATERAL DRAINAGE LAYER 2.00 PERCENT SLOPE 600.0 FEET DRAINAGE LENGTH = 6.00 INCHES THICKNESS **EVAPORATION COEFFICIENT** 3.300 MM/DAY**0.5 0.3710 VOL/VOL POROSITY 0.1720 VOL/VOL FIELD CAPACITY 0.0500 VOL/VOL WILTING POINT = 5.40000010 INCHES/HR EFFECTIVE HYDRAULIC CONDUCTIVITY ## LAYER 4 BARRIER SOIL LAYER WITH LINER THICKNESS = 6.00 INCHES EVAPORATION COEFFICIENT = 3.100 MM/DAY**0.5 POROSITY = 0.2907 VOL/VOL FIELD CAPACITY = 0.1415 VOL/VOL WILTING POINT = 0.0500 VOL/VOL EFFECTIVE HYDRAULIC CONDUCTIVITY = 0.27000001 INCHES/HR ## LAYER 5 VERTICAL PERCOLATION LAYER THICKNESS = 36.00 INCHES EVAPORATION COEFFICIENT = 3.100 MM/DAY**0.5 POROSITY = 0.4292 VOL/VOL FIELD CAPACITY = 0.2718 VOL/VOL WILTING POINT = 0.1840 VOL/VOL EFFECTIVE HYDRAULIC CONDUCTIVITY = 0.01650000 INCHES/HR ## LAYER 6 WASTE LAYER THICKNESS = 300.00 INCHES EVAPORATION COEFFICIENT = 3.300 MM/DAY**0.5 POROSITY = 0.5200 VOL/VOL FIELD CAPACITY = 0.3200 VOL/VOL WILTING POINT = 0.1900 VOL/VOL ## GENERAL SIMULATION DATA 76.21 SCS RUNOFF CURVE NUMBER = 403000. SQ. FT TOTAL AREA OF COVER = 5.00 INCHES EVAPORATIVE ZONE DEPTH = 0.000001 LINER LEAKAGE FRACTION EFFECTIVE EVAPORATION COEFFICIENT = 5.000 MM/DAY**0.5 = 2.5550 INCHES UPPER LIMIT VEG. STORAGE 1.2125 INCHES INITIAL VEG. STORAGE = CLIMATOLOGIC DATA FOR DENVER COLORADO ## MONTHLY MEAN TEMPERATURES, DEGREES FAHRENHEIT | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |---------|---------|---------|---------|---------|---------| | 28.90 | 30.56 | 37.46 | 47.76 | 58.69 | 67.33 | | 71.35 | 69.69 | 62.79 | 52.49 | 41.56 | 32.92 | #### MONTHLY MEANS SOLAR RADIATION, LANGLEYS PER DAY | IAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | | |---------|---------|---------|---------|---------|---------|--| | 218.56 | 274.45 | 355.05 | 438.77 | 503.16 | 530.98 | | | 514.77 | 458.88 | 378.28 | 294.57 | 230.17 | 202.35 | | #### LEAF AREA INDEX TABLE | LAI | |------| | | | 0.00 | | 0.00 | | 0.31 | | 0.51 | | 0.51 | | 0.51 | | 0.51 | | 0.51 | | 0.46 | | 0.33 | | 0.16 | | 0.09 | | 0.00 | | | POOR GRASS WINTER COVER FACTOR = 0.30 ### AVERAGE MONTHLY TOTALS FOR 74 THROUGH 78 | | JAN/JUL | FEB/AUG | MAR/SE | P APR/OC | T MAY/NO | OV JUN/DEC | |--|------------------|------------------|------------------|------------------|------------------|------------------| | PRECIPITATION (INCHES) | 0.38 2.19 | 0.45
1.17 | 1.23 | 1.65 | 1.68 | 1.39
0.35 | | RUNOFF (INCHES) | | | | 0.000 | | | | EVAPOTRANSPIRATION (INCHES) | 0.421
1.543 | 0.524
1.233 | 0.833
0.598 | 1.297
0.520 | 1.538 | 1.149
0.308 | | PERCOLATION FROM BASE
OF COVER (INCHES) | 0.0010
0.0012 | 0.0009
0.0013 | 0.0016
0.0012 | 0.0011
0.0013 | 0.0011
0.0013 | 0.0012
0.0013 | | PERCOLATION FROM BASE
F LANDFILL (INCHES) | | | | | | | | DRAINAGE FROM BASE OF COVER (INCHES) | 0.104
0.127 | 0.094
0.137 | 0.103
0.126 | 0.111
0.132 | 0.122
0.129 | 0.125
0.132 | | DRAINAGE FROM BASE OF LANDFILL (INCHES) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | • | | | | | | | ******************* | | (INCHES) | (CU. FT.) | PERCENT | |-----------------------------------|----------|-----------|---------| | PRECIPITATION | 12.99 | 436315. | 100.00 | | RUNOFF | 0.069 | 2332. | 0.53 | | EVAPOTRANSPIRATION | 10.534 | 353779. | 81.08 | | PERCOLATION FROM BASE OF COVER | 0.0148 | 498. | 0.11 | | PERCOLATION FROM BASE OF LANDFILL | 0.0134 | 449. | 0.10 | | DRAINAGE FROM BASE OF COVER | 1.440 | 48366. | 11.09 | | DRAINAGE FROM BASE OF LANDFILL | 0.000 | 0. | 0.00 | ********************* | PEAK DAILY VALUES FOR 74 | THROUGH | 78 | |-----------------------------------|----------|-----------| | | (INCHES) | (CU. FT.) | | PRECIPITATION | 1.79 | 60114.2 | | RUNOFF | 0.152 | 5100.3 | | PERCOLATION FROM BASE OF COVER | 0.0024 | 81.0 | | PERCOLATION FROM BASE OF LANDFILL | 0.0006 | 20.5 | | DRAINAGE FROM BASE OF COVER | 0.014 | 480.1 | | DRAINAGE FROM BASE OF LANDFILL | 0.000 | 0.0 | | HEAD ON BASE OF COVER | 42.0 | | | HEAD ON BASE OF LANDFILL | 0.0 | · | | SNOW WATER | 0.63 | 21253.5 | | | | | | MAVININ VEC SOIL WATER (VOL/VOL) | 0 5110 | | | MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.5110 | | | MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.1833 | | APPENDIX 3 SOIL-GAS SURVEY Best Available Copy # Chen & Associates Consulting Geotechnical Engineers 96 South Zuni Denver, Colorado 80223 303/744-7105 Casper Colorado Springs Ft. Collins Glenwood Springs Phoenix Rock Springs Salt Lake City San Antonio September 10, 1987 Subject: Real Time Soil-Gas, Rocky Flats Landfill, Rocky Flats Plant, Golden, Colorado Job No. 6 011 87 Rockwell International Rocky Flats Plant North American Space Operations P.O. Box 464 Golden, Colorado 80402-0464 Attention: Mr. Tom Greengard As requested, Chen & Associates conducted a real time soil-gas survey at the Rocky Flats landfill on September 1 and 2, 1987. Twenty points were measured in the landfill for methane and hydrogen sulfide. The location of those points are shown on Figure 1. Methane was analyzed by a Century OVA 128 flame ionization detector in the gas chromatography mode. Hydrogen sulfide was analyzed by a Photovac 10S50 gas chromatograph with a photoionization detector. The summary of the analyzed compounds are shown in Table I. All sample and QA/QC Photovac 10S50 chromatograms are shown in Attachment 1. If you have any questions or if we may be of further service, please do not hesitate to contact us. Sincerely, CHEN & ASSOCIATES, INC. | By | | | | • | _ | |----|-------|----|----------|---|---| | | David | C. | Constant | | | DCC/eac Rev. By: DRG Encs. TABLE I SUMMARY OF HYDROGEN SULFIDE AND METHANE RESULTS | Soil-Gas | | Hydrogen Sulfide
Value | Methane Value | |----------------|------------------|---------------------------|---------------| | Sampling Point | Location | (ppm) | (ppm) | | 1 | N39560
E20330 | 0 | 0 | | 2 | N39380
E20330 | . 0 | 0.2 | | 3 | N39380
E20150 | 0 | 0 | | 4 | N39560
E20150 | 0 | 0 | | 5 | N39740
E20150 | 0 | 0.4 | | . 6 | N39920
E20150 | 0 | 0 | | 7 | N39740
E19970 | 0 | 0 | | 8 | N39560
E19970 | 0 | 0 | | 9 | N39380
E19970 | 0 | 0 | | - 10 | N39200
E19970 | 0 | . 0 | | 11 | N39470
E19880 | 0 | 0 | | 12 | N39650
E19880 | 0 | 0 | | 13 | N39740
E19790 | 0 | . 0 | | 14 | N39560
E19790 | . 0 | . 0 | TABLE I (cont.) SUMMARY OF HYDROGEN SULFIDE AND METHANE RESULTS | Soil-Gas | Hydrogen Sulfide
Value Methane | | | | |----------------|-----------------------------------|------------|------------------------|--| | Sampling Point | Location | | Methane Value
(ppm) | | | Sampling Forne | Deacton | (ppm) | () | | | 15 | ท39380 | 0 | 0 . | | | | E19790 | | | | | 16 | ท39920 | 0 | 0 | | | | E20330 | · | | | | 17 | N39740 | 0 | 0 | | | • • | E20330 | • | | | | 18 | N39560 | 0 | 0 | | | . 10 | E19610 | , V | U | | | | | , | | | | 19 | N39470 | 0 | · 0 | | | | E19700 | | • | | | 20 | N39290 | 0 | 0 | | | | E19700 | • | • | | Air Check Sample Equipment Check # PHOTOVAC ### CALIBRATED PEAK 3,H2S SAMPLE RUN SEP 1 1987 18:5 ANALYSIS 2 27 ROCKY FLATS TEMPEPATURE 24 KMM DCC GAIN 100 501182 COMPOUND NAME PERM 8.7, APROVIDE CONSIDER. sexement of the th H_2S Calibration # 3 STOP 9 03.2 SAMPLE RUN SEP 1 1982 10:20 ANALYSIS 9 31 ROCKY FLATS TEMPERATURE 24 KMM DCC GAIN 100 601:82 CORPOURD NAME OF PEAK ORDING OF SHEET in service in the STANG STOP & 60.41 SAMPLE RUN SEP 1 1982 10:23 ANALYSIS # 32 ROCKY FLATS TEMPERATURE 24 KMM DCC. GAIN 100 601:82 COMPOUND NAME OF PROKERS OF A PROGRESSION SAMPLE RUN SEP | 1987 | 10:33 ANALYSIS = 33 ROCKY FLATS TEMPERATURE 23 KNM DCC GAIN 100 601197 Consound then $\varepsilon_{\rm total} = (\varepsilon_{\rm total} + \varepsilon_{\rm total})$ grane in (85) 47 - 47 - 47 - 47 - 47 - 47 3 2 \$100 6 60.2 \$ANPLE RUN SEP 1 1987 10:42 ANALYSIS 3 6 ROCKY FLATS TEMPERATURE 24 KIND DCC GAIN 100 50:187 Connected part of the control of the second \$100 0 62.0 \$100 0 62.0 \$40 0 5EP 1 1982 10:44 ANALYSIS # 32 ROCKY FLATS TEMPERATURE 24 KMM DCC GAIN 100 601182 COMPOUND NAME OF SAME ALTERNATIONS STOP 9 60 2 SAMPLE RUM SEP 1 1982 10:52 ANALYSIS = 38 ROCKY FLATS TEMPERATURE 24 KMM DCC GAIN 100 621182 COMPOUND NAME OF SERVICES AND ARREST AND . 1.-t - 1. 1.- Air Check S105 6 60.0 SATIFLE RUN SEP ! 1982 10:54 ANALYSIS # 39 ROCKY FLOTS TEMPERATURE 25 KMM DCC GAIN 100 601107 confidence HALL SION 6 60.0 SMMPLE RUN SEP 1 1987 10:57 ANALYSIS 4 40 ROCKY FLATS TEMPERATURE 24 KMM DCC GAIN 100 601187 COMPOSES NOTE OF SHORE SERVICES SEP 1 1987 11: 4 ANALYSIS # 41 ROCKY FLATS TEMPERATURE 24 KNM DCC. SAMPLE RUN GAIN COMPOUND AND STOP 9 63.3 190 601182 CALIBRATED PEAK 3, H2S COMPOUND NAME OF GARAGING TO THE GARAGINATION OF Air Check 6 ${\rm H_2S}$ Calibration 7 PHOTOVAC CALIBRATED PERK 3.H2S Coperate their states of a Air Check H_2S Calibration STOP 9 60.0 SAMPLE RUN SEP 2 1987 10:44 ANALYSIS # 2 ROCKY FLATS TEMPERATURE 27 KMM DCC GAIN 199 601187 COMPOUND NAME PERK R.T. AREA/PPM 3,2 4,5 US 12,0 2,4 US Sampling Equipment Check USSID IS Air Check ПИКИОЛИ # PHOTOVAC CALIBRATED DEAK 19 HVS | SATIPLE RUN | | SEP 2 1987 18:48 | |-------------|-----|------------------| | ANALYSIS # | 3 | ROCKY FLATS | | TEMPERATURE | 28 | KNN DCC | | GAIN | 100 | 601187 | Station STOP 9 68.0 SAMPLE RUN SEP 2 1987 11: 9 ANALYSIS 8 5 ROCKY FLATS TEMPERATURE 38 KMM DCC GAIN 189 691187
CORPOUND NAME PEAK R.T. AREAZPPM INKINCHIN 1 3.3 5.5 US 2 12.0 3.0 US 3 25.8 16.0 mUS 4 35.2 142.4 mUS WHO HIM STOP 9 68.8 SATELE 1818 4 SEBCK? #2875 18:98 SATELE 1818 6ATT 185C GAIN. 188 6ATT 185C COFFCUND NAME PEAK R.T. AREA/PPM RNKHOM 1 3.3 5.2 US 2 12.8 2.1 US 3 25.3 16.7 mUS 4 36.5 31.5 mUS UNKNOWN STOP 9 60.0 SAMPLE RUN SEP 2 1387 11: 6 ANALYSIS # 6 ROCKY FLATS TEMPERATURE 32 KMM DCC GAIN 100 601107 COMPOUND NAME PERK R.T. AREA/PPM RUKUBUN 1 3.3 6.7 US 2 12.0 3.2 US 3 20.2 9.7 US 4 35.5 1.2 US RAKAONA UNKAONA 8 9 STOP 9 60.0 SATIPLE RUN SEP 2 1987 11:11 ANALYSIS 8 ROCKY FLATS TEIPPERATURE 33 KIN DCC GAIN 100 601187 COMPOUND NAME PEAK R.T. AREA/PPT. THKNOTH THKNOTH 1 3.1 7.1 US 2 12.0 3.7 US 3 25.2 25.9 mUS 4 35.2 14.1 mUS STORE 60.0 SAPPLEIBUM 9 SEBCKZ EBB7S 11:17 PRITERATURE 35 KMT DCC GAIN 100 601187 COPPOUND MATE PEAK R.T. AREA/PPT LINKNOUN 1 3.2 10.7 US LINKNOUN 1 1.2 10.7 US LINKNOUN 1 1.8 4.5 US LINKNOUN 9 84:9 16:2 pUS STOP 9 60.0 SAMPLE RUN SEP 2 1387 11: 9 ANALYSIS # 7 ROCKY FLATS TEMPERATURE 32 KMM DCC GAIN 188 681187 COMPOUND NAME PEAK R.T. AREA/PPM UNKNOUN 1 2.9 6.3 US UNKNOUN 2 12.0 3.4 US UNKNOUN 3 25.3 19.1 mVS 11 12 Air Check PHOTOUAG STARI_____ STOP 9 68.0 SEP 2 1987 11:37 | 12 | ROCKY FLATS | 17 | ROCKY FLATS | 18 UNKNOUN 3 12:0 1.3 US H25 4 14.4 11.41.99n H25 5 16.6 14.31 N9n UNKNOUN 6 25.1 20.2 MUS UNKNOUN 2 34.3 45.2 MUS 33.6 59.9 mUS START 14 PHOTOVAC CALIFORNIA - No. - . SAMPLE RUN SEP 2 1982 18:38 ANALYSIS # 17 ROCKY FLATS TEMPERATURE 32 KMM DCC GAIN 188 601187 UNKNOUN 1 3.5 4.4 US UNKNOUN 2 8.6 2.0 US UNKNOUN 3 17.0 1.3 US UNKNOUN 4 14.4 1.2 US H2S 5 16.6 10.00 Pm UNKNOUN 6 25.1 20.7 eUS UNKNOUN 2 34.3 45.2 eUS STOP 9 69.0 NPLE RIM SEP 2 1987 12:11 MALYSIS 2 21 ROCKY FLATS TEMPERATURE 35 KMN DCC GAIN 188 G01187 CONFOUND NAME PERK R.T. AREA/PPM LINKNOLIN 1 3.2 6.1 US LINKNOLIN 2 12.0 3.4 US LINKNOLIN 2 12.0 3.4 US LINKNOLIN 3 28.6 25.5 MUS LINKNOLIN 3 28.6 25.5 MUS LINKNOLIN 1 35.9 120.6 MUS STOR 9 60.3 SAMPLE RUM SAMPLE RUM PERFETURE 36 GAIN 100 COMPOUND MADE PEAK R.T. AREA/PPI UNKNOUN 1 3.3 6.0 US UNKNOUN 2 12.1 3.7 US UNKNOUN 3 26.4 30.1 MUS UNKNOUN 4 25.0 33.3 MUS UNKNOUN 5 52.3 17.1 MUS 15 STORT STAP 68.8 SAPPLE RUN SEP 2 1982 12:28 ANALYSIS 8 24 ROCKY FLATS TEMPERATURE 38 KMM DCC UNKNOUN 2 12.2 3.2 US 1825 3 16.8 2.253 PPI 19KNOUN 4 25.; 6,5 mUS NKNOUN 5 34.6 36.6 mUS PHOTOUAC CALLPONED fower died. COMPOUND NAME PEAK R.T. AREASPPM STOP 9 60.0 SAMPLE RUN SEP 2 1987 12:31 ANALYSIS 2 25 ROCKY FLATS TEMPERATURE 39 KM1 OCC GAIN 188 681187 COMPOUND MANE PEAK R.T. AREA/FPT UNKNOWN 1 2.7.9 7.1 US NIKNOWN 2 12.0 3.8 US UNKNOWN 3 25.6 18.2 MUS COMPOUND NAME PEAK R.T. AREA/PPM UNKKOUK 1 3.0 8.4 US UNKKOUK 2 12.0 3.8 ÚS UNKKOUK 3 20.3 5.1 US UNKKOUK 4 33.7 300.3 mUS Air Check STOP 9 60.0 SEP 2 1987 12:48 ANALYSIS 9 28 ROCKY FLATS TEMPERATURE 41 KINI DEC GAIN 100 601187 COMPOUND MANE PEAK P. T. AREAZPEN 1 12:8 3:8 US HANGE THE PERSON NAMED IN COLUMN TO SERVICE SHIPLE PUR 20 SEBCKZ FOOTS 12-43 TEMPERATURE 41 KMM DCC GAIN 188 681187 пикиол пикиолЦ COMPOUND MADE FEAK R.T. AREAJPPO 1 12:6 3:8 Us 16.6 10.00 Film 25.4 84.8 mUS 24.2 16.2 mUS 52.3 28.8 mUS H25 UNKNOUN ころべるのにっ ころべるのじょ STOP # 60.0 SAMPLE RUN SEP 2 1987 12:38 ANALYSIS # 27 ROCKY FLATS TEMPERATURE 41 KMN DCC GAIN 108 601187 COMPOUND MANE PEAK R.T. AREA/PPM UNKHOUN 1 3.0 5.3 US 2 12.0 4.2 US 3 25.6 42.2 mUS 4 34.0 25.8 mUS ころべるのころ UNKHO⊔N STOP @ 60.0 SAMPLE RUN SEP 2 1387 12:46 ANALYSIS # 29 ROCKY FLATS TEMPERATURE 41 KMM DCC GAIN 100 601187 COMPOUND NAME PEAK R.T. AREA/PPR 1 3.2 9.5 US 2 11.2 4.6 US 3 25.3 30.0 MUS 4 33.1 89.2 MUS ころべるひにち UNKNOUN UNKNOUN пикиопи . 1 19 20 H₂S Calibration Pump Check # APPENDIX 4 SITE CHARACTERIZATION PLAN NORTH SPRAYFIELD 1.0 INTRODUCTION The north sprayfield area located adjacent to the landfill will be studied under this closure plan, to evaluate if contamination has occurred in the area. The sprayfield is located northwest of the east pond. The sprayfield measures approximately 280 by 480 feet. Water sprayed onto this field was pumped from the west pond. This sprayfield has not been used since the west pond was removed in May, 1981. Soil sampling will be performed in the north sprayfield area in 1988. Based on the method of application of waters to the sprayfield and uniformity of pond water it is assumed that the contamination, if present, will be relatively uniform in distribution adjacent to spray lines. Therefore, the sampling plan will be designed to characterize uniform contamination in the areas adjacent to previous spray lines. CO7890010526 Date: July 1, 1988 Revision No: 1 # 2.0 INDICATOR PARAMETERS FOR SOIL SAMPLING Because of the wide variety of materials which had the potential to be disposed of in the landfill and limited previous sampling, specific indicator parameters can not be identified at this time. The soil samples collected in the sprayfield will be analyzed for: - . Volatile Organic Compounds (EPA Method 624) - . Semi-Volatile Organic Compounds (EPA Method 625) - . Metals - . Radionuclides CO7890010526 Date: July 1, 1988 Revision No: 1 ### 3.0 CHARACTERIZATION OF NORTH SPRAYFIELD Characterization of the soils in the sprayfield will be conducted in a phased assessment. The first phase of characterization will consist of limited soil sampling and direct radiation surveys of each sprayfield in order to evaluate if soil contamination exists. If contamination is identified in the Phase I assessment, a second phase will be conducted in order to further define the extent of contamination. ### 3.1 Direct Radiation Survey The direct gamma radiation survey will be conducted over the ground surface to detect measurable amounts of radioactivity. The assessment will be conducted in accordance with Rocky Flats radiation monitoring procedures (Rockwell, 1986c). The gamma survey will be with a Field Instrument for Detection of Low Energy Radiation (FIDLER). Measurements will be compared to background radiation levels for evaluation of potential contamination. Date: July 1, 1988 Revision No: 1 ### 3.2 Phase I Soil Sampling ### 3.2.1 Introduction The Phase I survey, consisting of surface soil sampling and direct radiation survey, will be conducted of the sprayfield. The surveys are intended to evaluate if the soils in the sprayfield are contaminated. The sampling program will consist of approximately evenly spaced sampling points adjacent to previous spray lines. This sampling program, to characterize the contamination at the facility was selected as spraying operations will have resulted in a uniform and dispersed contamination around the previous spray lines. It is assumed the results of this survey will directly indicate if contamination is or is not present. The major soil series over much of the Rocky Flats Plant site is the Flatirons very cobbly sandy loam. This is the soil series present at the sprayfield. This soil has a high rock fragment content ranging to 80 percent with a thick clay matrix horizon ranging up to 60 percent clay. The clay is predominantly montmorillonite, with a high cation C07890010526 Date: July 1, 1988 Revision No: 1 exchange capacity and a moderate shrink/swell potential. The top 13 inches is a very cobbly sandy loam with a permeability ranging from two to six inches per hour. From 13 to 47 inches, the soil is a very gravelly clay with a permeability range of 0.06 to 0.2 inches per hour. Below 47 inches, the soil is a sandy clay loam with a permeability that ranges from 0.6 to 2.0 inches per hour. This data is from Soil Conservation Service report and has been confirmed by previous site investigations the Rocky Flats Plant. The above soil characteristics and the noncontinuous input of contaminants to the sprayfield currently indicates contaminated soil may be limited to the soils. The relatively low permeability clay layer, extending from a depth of 13 to 47 inches, is anticipated to have restricted the migration of any contaminants that may have been released from sprayfield. Therefore, preliminary sampling and analyses of soils will be limited to shallow soils up to and including the contact with the clay layer. ### 3.2.2 Sampling Procedures At each sampling location, an approximate one-foot deep boring will be made with hand implements or a bucket auger, C07890010526 Date: July 1, 1988 Revision No: 1 depending upon soil conditions. Samples will be comprised of the composite of materials exposed over the length of the boring. Sampling for volatile organic compounds will be grab samples at the contact with the clay layer. All samples will be properly labeled, stored on ice, and delivered to an off-site laboratory for analyses and to permanent storage for holding extra samples. Detailed procedures for soil sampling are proved in Appendix A of the CEARP, Phase 2: Rocky Flats Plant (Appendix 5). 3.2.3 Locations and Number of Borings Within the sprayfield the sampling pattern will be as shown on Figure 2 of the Landfill Closure Plan. The sampling pattern was selected as it provides a evenly spaced sampling grid in the vicinity of the previous spray lines. 3.2 Quality Assurance/Quality Control The Quality Assurance/Quality Control (QA/QC) procedures to be used for soil sampling and analyses are presented in the CEARP, Phase 2: Rocky Flats Plant. The QA/QC Plan is reproduce in Appendix 5 of the Present Landfill Closure # 3.3 Data Analysis An assessment of soil contamination for the sprayfield will be based on comparing concentrations of soils with the following: - Metals Average trace element concentrations in soils, as presented in "Hazardous Waste Land Treatment," Table 6.46 (U.S. Environmental Protection Agency, 1983), or average background levels determined from existing background soil data whichever is more. - Volatile and Semi-Volatile Organics Any standards for these compounds in water, whether proposed, interim, or recommended, will be directly applied to soil and sediment. Therefore, if a standard of 0.200 ppm exists for a VOC in water, this standard will
be applied to concentrations of this VOC in soil. This is a conservative standard for soils. If a standard for a VOC does not exist, then the Certified Lab Protocol (CLP) Contract Required Detection Limit (CRDL) for low soil/sediment will be used. this CRDL is not achievable due to analytical interference, then the medium soil/sediment CRDL, which is 100 times the low soil/sediment CRDL, will be used. These limits will define the maximum allowable levels for clean soils. - Plutonium The U.S. EPA, in consultation with other federal agencies, has developed interim recommendations to be used for protection of public health by Pu and other transuranium elements exist. The recommendations are intended to provide long-term radiation protection for all exposed persons in a "critical segment of the population" and specify that both the individual and collective radiation doses should be "as-lowas-reasonably-achievable (ALARA)." These interim recommendations present a soil screening level of 0.2 microcuries of transuranium per square meter in the upper 1 cm of soil. This presents a combined inhalation and ingestion risk 1 x 10⁻⁰. At activity levels greater than this, additional evaluation is recommended to determine the actual dose rates to exposed persons (U.S. Environmental Protection Agency, 1986. Assuming a soil density of 1 gm/cm³, this activity level translates to 20 picocuries per gram (pCi/qm) of soil. This limit will be applied to the soil and sediment sampling conducted under this characterization plan. Uranium - The International Committee of Radiological Protection presents an acceptable standard of 100 millirems (mrem) of effective dose equivalent per year to exposure for long-term exposure for radionuclides from man-made sources 1977). The National Council on (ICRP, Radiological Protection (NCRP) has published soil guides for uranium, radium and lead-210 based on a dose rate of 500 mrem/year. Adjusting these guides to reflect the 100 mrem/year effective dose equivalent (reducing each guide by a factor of five) results in adjust guides of 320 pCi of uranium per gram of soil, 8 pCi of radium per gram of soil, and 3 pCi of lead-210 per gram of soil (NCRP, 1984). Since all of these materials are found in soil, the sum of the fractions (the observed concentration divided by the concentration limit) must not exceed unity (one). The sum of the fractions technique is used by the Nuclear Regulatory Commission (NRC), U.S. DOE, and Colorado regulations when addressing mixtures. any fraction is less than ten percent, the material is considered non-existent for the purposes of the sum of fractions calculation. Based on the above guides, preliminary analyses will be for uranium only. If the uranium concentration exceeds ten percent of the guide (32 pCi/gm), the radium and lead-210 concentrations in the soil sample will be determined. If the sum of the fractions is found to exceed unity, and the activity at the unit is significantly greater than the background activity for these compounds, soil removal will be used to reduce the sum of fractions to unity or less. Tritium - The current USEPA and Colorado standard for tritium in drinking water is 20,000 pCi/l. this will be the standard applied for tritium in soil, sediment and water. The use of detection limits for volatile and semi-volatile organics in soil is quite conservative based on the results of the risk assessment performed as part of the feasibility study for the 881 Hillside (U.S. Department of Energy, 1988). The results of the risk assessment indicate acceptable soil concentrations far in excess of water standards or detection limits. The concentrations based on water standards or detection limits have been adopted for the purposes of ground-water protection. The results of individual soil samples taken from the sprayfield will be compared with the applicable criteria to determine if soil contamination exists. The soil will be considered contaminated by metals or radionuclides if the individual results exceed the applicable standard by more than two standard deviations. The soil will be considered contaminated by volatile or semi-volatile organics if the CO7890010526 Date: July 1, 1988 Revision No: 1 individual results exceed the applicable standard, or if no standard exists, the detection limit of the parameter. If no soil contamination is found, no further soil analyses will be performed. Where no soil contamination is found the sprayfield will be considered clean and closure certified. # 3.4 Phase II Sampling If the sampling activities at the sprayfield indicates contamination is present, further analyses will be conducted to define the extent of contamination and to determine further actions. The additional sampling will be conducted to determine both vertical and horizontal extent of contamination and/or to identify the contamination at a 90 percent confidence level based on a statistically valid analysis. The vertical extent of contamination will be determined by extending the sampling to uncontaminated materials or to the ground-water table, whichever is shallower. If required, the Phase II sampling plan will be developed and submitted to the CDH for their approval within 30 days after determining Phase II sampling is required. If necessary, the closure plan for the landfill will be revised based on the Phase I study. In that case, the Phase II sampling plan will be part of the revised closure plan. The Phase II sampling plan will follow the general guidelines presented in Appendix I-2 of the RCRA Part B Operating Permit Application (U.S. Department of Energy, 1987a). Phase II sampling will continue until the limits of contaminated soil have been identified. # APPENDIX 5 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES FOR SOIL CHARACTERIZATION # DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE ENVIRONMENT, SAFETY AND HEALTH DIVISION ENVIRONMENTAL PROGRAMS BRANCH # COMPREHENSIVE ENVIRONMENTAL ASSESSMENT AND RESPONSE PROGRAM # PHASE 2: **ROCKY FLATS PLANT** INSTALLATION GENERIC MONITORING PLAN (Comprehensive Source and Plume Characterization Plan) QUALITY ASSURANCE/QUALITY CONTROL PLAN February 1987 DRAFT # TABLE OF CONTENTS | 1. | INTRODUCTION | 1 - 1 | |--|---|--------------------------| | 2.1.
2.1.
2.2.
2.3. | PROJECT ORGANIZATION AND RESPONSIBILITY | 2·! | | 3.
3.1.
3.2.
3.3.
3.4.
3.5. | QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA | 3-1
3-1
3-2
3-3 | | 4. | SAMPLING PROCEDURES | 4-1 | | 5. ' | SAMPLE CUSTODY | 5-1 | | 6. | CALIBRATION PROCEDURES AND FREQUENCY | 6-1 | | 7. | ANALYTICAL PROCEDURES | 7-1 | | 8. | DATA REDUCTION, VALIDATION, AND REPORTING | 8-1 | | 9. | INTERNAL QUALITY CONTROL PROCEDURES | 9-1 | | ١٥. | PERFORMANCE AND SYSTEMS AUDITS | 10-1 | | 11. | PREVENTIVE MAINTENANCE | 11-1 | | 12. | LABORATORY DATA ASSESSMENT PROCEDURES | 12-1 | | 13. | CORRECTIVE ACTION PROCEDURES | 13-1 | | 14. | QUALITY ASSURANCE REPORTS | 14-1 | | 15 | DEFEDENCES | 15.1 | # TABLES | 3.1. | Analysis Plan for Aqueous Samples | 3-5 | |------|---|------| | 3.2. | Analysis Plan for Soil/Sediment Samples | 3-7 | | 3.3. | Analysis Plan for Radiological Analysis for Aqueous Samples | | | 3.4. | Analysis Plan for Radiological Analysis for Soils/Sediments | | | 3.3. | Hazardous Substance List (HSL) and Contract Required | | | | Detection Limits (CRDL) | 3-15 | | 3.6. | Elements Determined by Inductively Coupled Plasma | | | | Emission or Atomic Absorption Spectroscopy | 3-20 | | | FIGURES | | | 2.1. | Quality Assurance/Quality Control Organization Chart | 2-4 | # QUALITY ASSURANCE/QUALITY CONTROL PLAN #### I. INTRODUCTION CEARP Phase 2 consists of CEARP Phase 2a, Monitoring Plan, and CEARP Phase 2b, Site Characterization (Remedial Investigation). This Quality Assurance, Quality Control (QA/QC) Plan is one component of the Monitoring Plan for Rocky Flats Plant. The Monitoring Plan typically consists of five parts: Synopsis, Sampling Plan, Technical Data Management Plan, Health and Safety Plan, and Quality Assurance/Quality Control Plan. Because of the Compliance Agreement made by the State of Colorado, Environmental Protection Agency, and the DOE, this Monitoring Plan also includes a Feasibility Study Plan. The Synopsis provides a discussion of the current situation and serves as an introduction to the other plans. CEARP uses a three-tiered approach in preparing the monitoring plans: the CEARP Generic Monitoring Plan (CGMP) (DOE, 1986b), the Installation Generic Monitoring Plan (IGMP), and the Site-Specific Monitoring Plans (SSMPs). The CGMP Quality Assurance/Quality Control (QA/QC) Plan provides the generic guidelines and procedures that will be employed during CEARP Phase 2 site characterization (remedial investigation) to ensure the reliability of data collected at CEARP sites. It is intended to establish a general quality assurance/quality control policy and to provide the framework for more specific quality assurance/quality control requirements to be employed at each installation and at each site. This IGMP Quality Assurance/Quality Control Plan provides installation generic information and procedures, whereas the SSMPs will provide site-specific detail regarding locations, types and number of samples. This IGMP is the Comprehensive Source and Plume Characterization Plan required by the Compliance Agreement. Therefore, the acronym used to refer to this plan is IGMP/CSPCP. According to DOE policy, DOE activities shall maintain programs of quality assurance (DOE Order 5700.6B). In the area of environmental protection, quality assurance plans must be integrated with the DOE implementation of CERCLA (DOE Order 5480.14). CEARP Phase 2b site characterizations (remedial investigations) will be implemented using procedures to assure that the precision, accuracy, completeness, and
representativeness of data are known and documented. At a minimum, this will include adherence to the CEARP CGMP, IGMP/CSPCP, and SSMP Quality Assurance/Quality Control Plans, and may include preparation of written Quality Assurance/Quality Control Plans covering each aspect of the project performed. This IGMP/CSPCP Quality Assurance/Quality Control Plan presents the organization, objectives, functional activities, and specific quality assurance and quality control activities associated with the CEARP Phase 2b site characterizations (remedial investigations) at Rocky Flats Plant. The Quality Assurance/Quality Control Plan is designed to achieve specific data quality goals for CEARP Phase 2b site characterizations (remedial investigations). Appendix A includes the quality assurance protocols for all laboratory services to be provided under CEARP Phase 2b site characterizations (remedial investigations). A brief description of the CEARP Phase 2b site characterization (remedial investigation) and background can be found in the Synopsis. For a more in-depth background description, see the CEARP Phase 1 report. # 2. PROJECT ORGANIZATION AND RESPONSIBILITY Project organization and responsibility are divided among DOE, Los Alamos National Laboratory, and Rockwell International as described below. Los Alamos National Laboratory has the primary responsibility to implement CEARP under the guidance of DOE-Albuquerque Operations Office. However, operational responsibilities have been assigned to Rockwell International at Rocky Flats Plant for the site characterizations (remedial investigations). The DOE-Rocky Flats Plant Area Office is responsible for the function of the Rocky Flats Plant. Because of this responsibility, the DOE-Rocky Flats Plant Area Office will provide additional guidance to its contractor, Rockwell International, in implementation of the CEARP Phase 2b site characterizations (remedial investigations). Project organization is shown in Figure 2.1. The responsibilities of the various personnel can be divided into operational, laboratory, and quality assurance responsibilities, as follows. ### 2.1. OPERATIONAL RESPONSIBILITIES Assistant Secretary for the Environment. The DOE Assistant Secretary for the Environment appoints Headquarters investigation boards and establishes the scope of Headquarters investigations (DOE Order 5484.1). DOE-wide Environmental Surveys and Audits originate from the Assistant Secretary. Environmental Surveys and Audits. Headquarters Environmental Survey Teams have been directed to conduct one-time environmental surveys and sampling of DOE facilities. These surveys are independent of CEARP activities at Rocky Flats Plant, but data from survey team sampling will be utilized in the CEARP characterization of Rocky Flats Plant. A Headquarters environmental survey team visited the Rocky Flats Plant site in 1986. The results of the survey will be used as an internal management tool by the Secretary and Undersecretary of DOE. Audits are a function of the Office of the Assistant Secretary for the Environment. Audit teams provide quality control for the implementation of environmental monitoring at DOE facilities. Although independent of CEARP, audit teams complement CEARP activities by providing additional quality assurance. DOE-Albuquerque Operations Office Environmental Programs Branch. The DOE-Albuquerque Operations Office, Environmental Programs Branch, is responsible for overseeing all environmental programs within DOE-Albuquerque Operations and conducting special assessments such as CEARP. DOE-Rocky Flats Area Office. The DOE Rocky Flats Area Office is responsible for the missions of the Rocky Flats Plant, including environmental protection. The DOE Rocky Flats Area Office oversees the integration of Rocky Flats Plant resources with CEARP activities at Rocky Flats Plant. Rockwell International. Rockwell International, as prime contractor to DOE, provides support to DOE in accomplishing the mission of Rocky Flats Plant, including environmental protection. Rockwell International will perform the CEARP Phase 2b site characterizations (remedial investigations) at Rocky Flats Plant. Los Alamos National Laboratory. Los Alamos National Laboratory manages the CEARP program, providing direction, oversight and review, and preparing final reports. # 2.2. ANALYTICAL LABORATORY RESPONSIBILITIES Analytical laboratory responsibilities include performing analytical services, and providing quality assurance. Rockwell International will perform the CEARP Phase 2b site characterizations (remedial investigations) at Rocky Flats Plant. This IGMP/CSPCP provides guidance for quality assurance programs to be implemented by - field laboratory operations - analytical laboratories - geotechnical laboratories - radiological laboratories. ### 2.3. QA RESPONSIBILITY Quality assurance responsibilities are to monitor and review the procedures used to perform all aspects of site characterizations (remedial investigations), including data collection, analytical services, data analysis, and report preparations. Primary responsibility for project quality rests with the Rockwell International CEARP Manager. Ultimate responsibility for project quality rests with DOE. Figure 2.1. Quality Assurance/Quality Control Organization Chart. # 3. QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA The overall quality assurance objective is to develop and implement procedures for field sampling, field testing, chain of custody, laboratory analysis, and reporting that will assure quality as specified in DOE orders governing quality assurance and environmental protection. Specific procedures to be used for sampling, chain-of-custody, audits, preventive maintenance, and corrective actions are described in other sections of this IGMP Quality Assurance/Quality Control Plan. The purpose of this section is to define quality assurance goals for accuracy; precision and sensitivity of analysis; and completeness, representativeness, and comparability of measurement data from all analytical laboratories. Quality assurance objectives for field measurements are also discussed. For some field activities, samples will not be collected, but measurements will be taken where quality assurance concerns are appropriate (e.g., field measurements of pH, temperature, and elevations). The primary quality assurance objective in activities where samples are not collected is to obtain reproducible measurements to a degree of accuracy consistent with their intended use and to document measurement procedures. #### 3.1. REGULATORY AND LEGAL REQUIREMENTS Data used to evaluate compliance with the National Interim Primary Drinking Water Standards, State of Colorado water-quality standards, or water-quality criteria for agricultural or industrial use will have method detection limits as specified by the analytical method used, as appropriate. ### 3.2. LEVEL OF QUALITY ASSURANCE EFFORT Field duplicates, field blanks, and trip blanks will be taken and submitted to the analytical laboratories to provide a means to assess data quality resulting from field sampling. Duplicate samples will be analyzed to check for sampling reproducibility. Field and trip blanks will be analyzed to check for procedural contamination and/or ambient site conditions that are causing sample contamination. Trip blanks will be analyzed to check for contamination during packaging and shipment. Because volatile organic compounds are a class of contaminants most likely to be introduced to the sample by the sample container, there will be one trip blank per batch of samples designated for volatile organic compound analysis (shipping container). There will be one duplicate and one field blank for every 10 investigative samples collected. For laboratory organic analysis, matrix spikes and matrix spike duplicates will be used. The general level of quality assurance effort for organic analysis will be one matrix spike and one matrix spike duplicate prepared for every 20 samples of similar concentration and/or similar sample matrix, whichever is greater. In addition to field check samples, water samples of known concentration traceable to either EPA or NBS standards will be prepared for inorganic and radiological analyses. The general level of quality assurance effort for inorganic analyses will be one duplicate known sample and one duplicate field sample for every 10 investigative samples to check analytical reproducibility. Soil samples selected for geotechnical testing will include one field duplicate for each 20 analyses being performed, if possible, but will not include blanks. The groundwater, surface water, and soil samples collected at Rocky Flats Plant during CEARP Phase 2 will be analyzed using the analytical methods specified in Tables 3.1, 3.2, 3.3, and 3.4. The level of laboratory quality assurance effort will correspond to the procedures outlined in Appendix A. ### 3.3. ACCURACY, PRECISION, AND SENSITIVITY OF ANALYSES The fundamental quality assurance objective with respect to accuracy, precision, and sensitivity of laboratory analytical data is to achieve the quality control acceptance criteria of the analytical protocols. Sensitivities required for analyses of radionuclides, organics, metals, and other inorganic compounds, in both aqueous and solid matrices will be the detection limits shown in Tables 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. Achieving these detection limits depends on the sample matrix. Highly contaminated samples requiring dilution will have detection limits higher than those detected. The accuracy of field laboratory measurements of groundwater and surface water pH will be assessed through pre-measurement calibrations and post-measurement verifications using at least two standard buffer solutions. The two measurements must each be within +0.05 standard units of buffer solution values. Precision will be assessed through replicate measurements of every tenth sample. The standard
deviation of four replicate measurements must be less than or equal to 0.1 standard units. (The electrode will be withdrawn, deionized-rinsed and re-immersed between each replicate. The calibration and verification will be done before the first replicate and after the last replicate.) The instrument used will be capable of providing measurements to 0.01 standard units. The geotechnical and field data will be considered accurate if the quality assurance criteria with respect to equipment, solutions, and calculations are met, and if adherence to appropriate methods can be documented during a systems audit. # 3.4. COMPLETENESS, REPRESENTATIVENESS AND COMPARABILITY The laboratories will provide data meeting quality control acceptance criteria as described in Appendix A. Laboratories will provide completely valid data (IGMP/CSPCP QA/QC Plan, Section 8); the reasons for any variances from 100 percent completeness will be documented in writing. #### 3.5. FIELD MEASUREMENTS Measurement data will be generated in many field activities. These activities may include, but are not limited to, the following: - using geophysical surveys - documenting time and weather conditions - locating and determining the elevation of sampling stations - measuring pH, conductivity, and temperature of water samples - qualitative organic vapor screening of solid samples using a photoionization detector (PID) or an organic vapor analyzer (OVA) - measuring water levels in a borehole or well - standard penetration testing - calculating pumping rates - verifying well-development and presampling purge volumes - performing hydraulic conductivity tests The general quality assurance objective for such measurement data is to obtain reproducible and comparable measurements to a degree of accuracy consistent with the intended use of the data through the documented use of standardized procedures. Procedures for performing these activities and standardized formats for documenting them are presented in the CGMP and IGMP/CSPCP Sampling Plans. These procedures may be incorporated by reference (EPA methods) or included as appendices. Standardized formats for documenting data collection are included in the Technical Data Management Plan. Table 3.1. Analysis Plan for Aqueous Samples* | FLA | | | | | | | | | |----------------|------------------------------------|------------------------|----------------|---|------------------|--|-------------------------------|------------------------| | FLATS PLANT | Analyte | <u>Method</u> | DetectionLimit | Sample
<u>Container</u> | Sample
Volume | Preservations | Holding
<u>Time (days)</u> | Reporting <u>Units</u> | | ANT IGMP/CSPCP | HSL Volatile | Ref. 1 | ĸ ³ | 40 ml vial (2)
w/teflon lined
silicone rubber
septum | 40 ml | cold, 4°c ⁹ | 14 | ug/L ` | | CSPCP | HSL Base/Neutral/Acid ¹ | Ref. 2 | x ³ | Amber G, 1L | 1 ι | cold, 4°c ⁹ | 7/40 ⁷ | ug/L | | Draft | HSL Pesticide/PCB | Ref. 3 | x ³ | Amber G, 1L | 1 L | Cold, 4°c ⁹ | 7/40 | ug/L | | | HSL Inorganic ² | EPA 200.70 | _x 3 | P, G, 1L | - 1 L | рн<2, ы/ни0 ₃ 9 | 180 | ug/L | | reng. | Cyanide | EPA 335 ⁸ | x ³ | P, G, 1L | 0.5 L | рн>11, ы/мвОн ⁹ | 14 | ug/L | | February 1987 | - рн ⁴ | EPA 150.18 | 0.1 pH unit | P. G | N/A | None | field Meas. | pH unit | | | Sp. Conductivity ⁴ | EPA 120.18 | 1 | P. G | N/A | None | Field Meas. | umho/cm | | (Revision 1) | Temperature 4 | EPA 170.18 | 0.1 | P, G | H/A | None | field Meas. | °c | | | Diss. Oxygen ⁴ | EPA 360.18 | 0.5 | G | N/A | None | field Meas. | mg/l | | QA/QC | TDS | EPA 160 ⁸ | 5 | P, G 1L | 0.1 L | cold 4 ⁰ C ⁹ | 7 | mg/l | | Plan | 155 | EPA 160 ⁸ | 10 | P, G 1L | 0.1 ι | Cold 4°C ⁹ | 7 | mg/l | | Section 3 | Total Phosphate | EPA 365.4 ⁸ | 0.01 | P, G 1L | 1 . | Cold 4 ⁰ C, pH<2 ⁹
w/H ₂ SO ₄ | 28 | mg/l | | Table 3.1. (Continue | d) |) | |----------------------|----|---| |----------------------|----|---| | | Analyte Chloride, Sulfate | <u>Hethod</u> EPA 352.2 ⁸ 375.2 ⁸ | Detection Limit | Sample Container P, G, 1L | Sample <u>Volume</u> 1 L | <u>Preservations</u>
Cold 4°C ⁹ | Holding
<u>[ime (days)</u>
28 | Reporting Units mg/l | |--------|-------------------------------------|---|-----------------|---------------------------|--------------------------|---|-------------------------------------|----------------------| | • | Carbonate/Biocarbonate ⁵ | s.m. 403 ⁶ | 10 | P, G, 1L | 1 L | Cold 4°C9 | 14 | mg/l | | CSPCF | Nitrate | EPA 300.0 ⁸ | 5 | P, G, 1L | 1 L | Cold 4°C9 | 2 | mg/l | | ט
ט | Hexavalent Chromium | S.M. 3128 ⁶ | 0.01 | P, G, 1L | 1 . | Cold 4°C9 | 1 | mg/l | The HSL Base/Neutral/Acid fractions analytical parameters are the HSL semivolatites. - Ref. 1. Method 624 "Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water," EPA 600/4-82-057 plus additions, 1984. - Ref. 2. Method 625 "Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water," EPA 600/4-82-057 plus additions, 1984. - o Ref. 3. Method 608 "Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water," EPA 600/4-82-057 plus additions, 1984. Includes Cesium, Molybdenum, Strontium which are non-HSL metals. See Tables 3.5 and 3.6. ^{*}field Measurements. These are reported as carbonate and biocarbonate alkalinity. OStandard Methods for Examination of Water and Wastewater, 15th Edition. ⁷⁷ days to extraction, analysis within 40 days of extraction. ⁸Methods for Chemical Analysis of Water and Wastes, 1983; EPA 600/4-79-020. All samples with the exception of VOA's will be filtered within 4 hours of sample collection, and preservatives added to the filtrate as specified. All samples will be kept at 4°C until delivered to the laboratory. ^{*}The SSMP Sampling Plans will define the actual suite of parameters to be analyzed for specific samples. Table 3.2. Analysis Plan for Soil/Sediment/Waste Samples* | ROCKY FLATS PLANT | HSL Volatile | Method
Ref. 2 | DetectionLimit | Sample Container 40 ml vial (2) W/teflon lined silicon rubber septa | Sample <u>Yolume</u> 5 | PreservationsCold, 4°C | Holding
<u>Time (days)</u>
14 | ReportingUnits ug/kg | |-------------------|-----------------------|-------------------------|----------------------|--|------------------------|------------------------|-------------------------------------|----------------------| | EMO
EMO | HSL Base/Neutral/Acid | Ref. 3 | x ² | Amber G, 1 L | 10-30 | Cold, 4°C | 7/403 | ug/kg | | IGMP/CSPCP | HSL Pesticide/PCB | Ref. 4 | x ² | Amber G, 1 L | 10-30 | Cold, 4°C | 7/403 | ug/kg | | | not inorganic | Ref. 5 | x ² | P G, 1 L | 200 | Cold, 4°C | 180 | mg/kg | | Draft | Reactivity | Ref. ó | Ref. 8 | Amber G | | Cold 4 ⁰ C | N/A | ug/l | | Februar | EP Toxicity | Ref. 7 | Ref. 9 | Amber G | 100 g | Cold 4°C | N/A | ug/l in
leachate | | y 1987 | Chloride | EPA 300.0 ⁵ | 60 ug/g ⁶ | G, 1 L | 20 | Cold, 4°C | H/A | mg/kg | | (R | Sulfate | EPA 300.0 ⁵ | 60 ug/g ⁶ | G, 1 L | 20 | Cold, 4 ⁰ C | N/A | mg/kg | | Via ion | Nitrate | EPA 300.0 ⁵ | 60 ug/g ⁶ | G, 1 L | 20 | cold, 4°C | N/A | mg/kg | | . QA/ | Cyanide | Ref. 1 | x2 | G, 1 L | 200 | Cold, 4°C | 14 | mg/kg | | Vqc I | Hexavalent Chromium | S. M. 3128 ⁷ | 1 ug/g ⁶ | G, 1 L | 100 | cold 4°C | 1 | mg/kg | $[\]frac{1}{2}$ Includes Cesium, Molybdenum, and Strontium which are non-HSL metals. ² See Tables 3.5 and 3.6. ³ Extract within 7 days, analysis within 40 days of extraction. Reported as dry weight, % moisture reported separately. Soil/Sediments will be leached with Laboratory Reagent Water (20 g soil to 50 ml water) and water extract analyzed using referenced procedure. Procedure reference Methods for Chemical Analysis of Water and Wastes, 1983; EPA 600/4-79-020. #### Table 3.2. (Continued) These are estimated detection limits. - Soil/sediment will be leached with Laboratory Reagent Water (5 g soil and 100 ml of water) by shaking for 2 hours, and the water extract fittered and subsequent analyzed. This is in accordance with method 3128 in Standard Methods for Examination of Water and Wastewater, 15th Edition. - *The SSMP Sampling Plans will define the actual suite of parameters to be analyzed for specific samples. - 5 Ref. 1. Method 9010 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 2. Hethod 8240 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 3. Method 8270 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 4. Method 8080 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 5. Method 6010 or 7000 Series Methods "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Rev April 1984. - D Ref. 6. Method 9010, 9030 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. - Ref. 7. Method 1310 "Test Methods for Evaluating Solid Wastes," Office of Solid Waste and Emergency Response, Washington, DC 20460, Revised April 1984. | | | lable 3.3. Anal | lable 3.3. Analysis Plan for Radiological Analysis for Aqueous Samples | gical Analysis fo | r Aqueous Samples | | | |-------------------|-----------------|---|--|-------------------|---------------------------|-------------------------------|--------------------| | Analyte | Nethod* |
Detection | Sample
Contains | Sample | Preservations | Holding
<u>[img (days)</u> | Reporting
Units | | Gross alpha/beta | 1,2,3,4,6,7,8,9 | Gross & =
2pci/L | P, 1 gel | 0.2 L | HNO ₃ to pH <2 | 180 | pci/1 | | Tritica | 1,2,3,8 | 1/10d 007 | G, 100 ml | 0.008 L | No preservation | NA | pci/t | | Pu-239 | 10,11 | 0.3 pci/t | P, 1 gal | 1.000 1 | HNO3 to pH <2 | 180 | 1/12d | | An-241 | 11,12 | 0.4 pci/L | P, 1 gel | 1.000 1 | HNO ₃ to pH <2 | 091 | 1/10d | | Isotopic U | 1,3,4,7,8,9 | 0.233 + 234 = 0.6 pci/t
u·238 = 0.6
pci/t | P, 1 | 0.500 L | HNO3 to pH <2 | | 7/15d | | Sr·90 | 1,3,4,8 | 1 pci/L | P, 1 gal | 1.000 L | нио ₃ to pH <2 | 180 | pci/t | | *See Attachment 1 | | | | | | | | #### ATTACHMENT I - 1. U.S. Environmental Protection Agency, 1979, Radiochemical Analytical Procedures for Analysis of Environmental Samples, Report No. EMSL-LY-0539-1, Las Vegas, NV, U.S. Environmental Protection Agency. - 2. American Public Health Association, American Water Works Association, Water Pollution Control Federation, 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed., Washington, D.C., Am. Public Health Association. - 3. U.S. Environmental Protection Agency, 1976. Interim Radiochemical Methodology for Drinking Water, Report No. EPA-600/4-75-008. Cincinnati U.S. Environmental Protection Agency. - 4. Harley, J. H., ed., 1975, HASL Procedures Manual, HASL-300; Washington, D.C., U.S. Energy Research and Development Administration. - 5. Misaqi, Fazlelleh L., Monitoring Radon-222 Content of Mine Waters Informational Report 1026, U.S. Department of Interior, Mining Enforcement and Safety Administration, Denver, CO, 1975. - 6. "Radioassay Procedures for Environmental Samples," 1967, USDHEW, Section 7.2.3. - 7. "Handbook of Analytical Procedures," USAEC, Grand Junction Lab. 1970, page 196. - 8. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water." EPA-600/4-80-032, August 1980, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268. - 9. "Methods for Determination of Radioactive Substances in Water and Fluvial Sediments," U.S.G.S. Book 5, Chapter A5, 1977. - 10. "Acid Dissolution Method for the Analysis of Plutonium in Soil," EPA-600/7-79-081, March 1979, U.S. EPA Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, 1979. - 11. "Procedures for the Isolation of Alpha Spectrometrically Pure Plutonium, Uranium and Americium," by E. H. Essington and B. J. Drennon, Los Alamos National Laboratory, a private communication. - 12. "Isolation of Americium from Urine Samples," Rocky Flats Plant, Health, Safety, and Environmental Laboratories. ### ATTACHMENT 2 #### Lower Limits of Detection The detection limits presented were calculated using the formula in N.R.C. Regulatory Guide 4.14, Appendix Lower Limit of Detection, pg. 21, and follow: $LLD = 4.66 \qquad \frac{BKG}{}$ (2.22) (Eff) (CR) (SR) (e-xt) (Aliq), #### Where | LLD | = | Lower Limit of Detection in pCi per sample unit | |-----|---|--| | BKG | = | Instrument Background in counts per minute (cpm) | | DUR | = | Duration of sample counting in minutes | | Eff | 2 | Counting efficiency in cpm/disintegration per minute (dpm) | | CR | = | Fractional radiochemical yield | | SR | = | Fractional radiochemical yield of a known solution | | x | = | The radioactive decay constant for the particular radionuclide | | t | = | the elapsed time between sample collection and counting. | In that LLD is a function of many variables including sample matrix, sample volume, and other factors, the limits presented are only intended as guides to order-of-magnitude sensitivities and, in practice, can easily change by a factor of two or more even for the conditions specified. | 8'7'£'l | 06.72 | |---------------------|------------------| | 6'8'1'7'5'1 | U siqosel | | 21,11 | 172.00 | | 11'01 | bn-526 | | ,7,8,4,2,5,1
9,8 | aibd\enqia eeoni | | #eshod* | 93X lenA | | | | 11'9 7 l '9 11'9 11'9 1 6'9 790163002 Sample Table 3.4. Analysis Plan for Radiological Analysis for Soils/Sediments Pci/9 6/10d pCi/g 6/10d 6/10d - इश्राप्त Reporting YN YH YN (3yeb) smil BuibloH VN YN Preservet ions 1.0 (B) 3215 Sample 1 pci/8 N-522 + 526 0.3 pc1/9 0.3 pC1/9 10 pci/9 = d ezona 6/10d y = 8 880JD Limiter noilosisd B/iJq £.0 * 885.U 8/13q £.0 = ### ATTACHMENT I - 1. U.S. Environmental Protection Agency, 1979, Radiochemical Analytical Procedures for Analysis of Environmental Samples, Report No. EMSL-LY-0539-1, Las Vegas, NV, U.S. Environmental Protection Agency. - 2. American Public Health Association, American Water Works Association, Water Pollution Control Federation, 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed., Washington, D.C., Am. Public Health Association. - 3. U.S. Environmental Protection Agency, 1976. Interim Radiochemical Methodology for Drinking Water, Report No. EPA-600/4-75-008. Cincinnati U.S. Environmental Protection Agency. - 4. Harley, J. H., ed., 1975, HASL Procedures Manual, HASL-300; Washington, D.C., U.S. Energy Research and Development Administration. - 5. Misaqi, Fazlelleh L., Monitoring Radon-222 Content of Mine Waters Informational Report 1026, U.S. Department of Interior, Mining Enforcement and Safety Administration, Denver, CO, 1975. - 6. "Radioassay Procedures for Environmental Samples," 1967, USDHEW, Section 7.2.3. - 7. "Handbook of Analytical Procedures," USAEC, Grand Junction Lab. 1970, page 196. - 8. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Auguat 1980, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268. - 9. "Methods for Determination of Radioactive Substances in Water and Fluvial Sediments," U.S.G.S. Book 5, Chapter A5, 1977. - 10. "Acid Dissolution Method for the Analysis of Plutonium in Soil," EPA-600/7-79-081, March 1979, U.S. EPA Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, 1979. - 11. "Procedures for the Isolation of Alpha Spectrometrically Pure Plutonium, Uranium and Americium," by E. H. Essington and B. J. Drennon, Los Alamos National Laboratory, a private communication. - 12. "Isolation of Americium from Urine Samples," Rocky Flats Plant, Health, Safety, and Environmental Laboratories. #### ATTACHMENT 2 ### Lower Limits of Detection The detection limits presented were calculated using the formula in N.R.C. Regulatory Guide 4.14, Appendix Lower Limit of Detection, pg. 21, and follow: 1/2 LLD = 4.66 BKG DUR (2.22) (Eff) (CR) (SR) (e-xt) (Aliq), #### Where LLD = Lower Limit of Detection in pCi per sample unit BKG = Instrument Background in counts per minute (cpm) DUR = Duration of sample counting in minutes Eff = Counting efficiency in cpm/disintegration per minute (dpm) CR = Fractional radiochemical yield SR = Fractional radiochemical yield of a known solution x = The radioactive decay constant for the particular radionuclide t the elapsed time between sample collection and counting. In that LLD is a function of many variables including sample matrix, sample volume, and other factors, the limits presented are only intended as guides to order-of-magnitude sensitivities and, in practice, can easily change by a factor of two or more even for the conditions specified. Table 3.5. Hazardous Substance List (HSL) and Contract Required Detection Limits (CRDL)** | CAS Number | | | Detec | tion Limits* | |--|-------------------------------|------------|-------|--------------| | CAS Number Ua/L Ua/Ka | | | | | | 2. Bromomethane 74-83-9 10 10 3. Vinyl Chloride 75-01-4 10 10 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. I.1-Dichloroethene 75-35-3 5 5 9. I.1-Dichloroethane
75-35-3 5 5 10. trans-1,2-Dichloroethane 156-60-5 5 5 11. Chloroform 67-66-3 5 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 5 13. 2-Butanone 78-93-3 10 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 5 15. Carbon Tetrachloride 56-23-5 5 5 5 16. Vinyl Acetate 108-05-4 10 10 10 17. Bromodichloromethane 75-27-4 5 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 < | Volatiles | CAS Number | | | | 2. Bromomethane 74-83-9 10 10 3. Vinyl Chloride 75-01-4 10 10 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. I.1-Dichloroethene 75-35-3 5 5 9. I.1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 | 1. Chloromethane | 74-87-3 | 10 | 10 | | 3. Vinyl Chloride 75-01-4 10 10 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 5 11. Chloroform 67-66-3 5 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethane 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 75-25-2 5 5 5 27. Toluene 108-88-3 5 5 28. Chloroethene 127-18-4 5 5 5 29. 4-Methyl-2-pentanone 108-10-1 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 20. Tetrachloroethene 127-18-4 5 5 5 21. Toluene 108-88-3 5 5 22. Chlorobenzene 108-90-7 5 5 23. Ethyl Benzene 100-41-4 5 5 24. Styrene 100-42-5 5 5 | | | | | | 4. Chloroethane 75-00-3 10 10 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 10-75-8 10 10 27. Bromoform 75-25-2 5 5 31. Toluene 108-88-3 5 5 32. Chloroethene 127-18-4 5 5 33. Ethyl Benzene 100-42-5 5 5 34. Styrene 100-42-5 5 5 | | | | • | | 5. Methylene Chloride 75-09-2 6 5 6. Acetone 67-64-1 10 10 7. Carbon Disulfide 75-15-01 5 5 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 | • | | | | | 7. Carbon Disulfide 8. 1,1-Dichloroethene 75-35-4 9. 1,1-Dichloroethene 75-35-3 9. 1,1-Dichloroethene 156-60-5 10. trans-1,2-Dichloroethene 156-60-5 11. Chloroform 67-66-3 12. 1,2-Dichloroethane 107-06-2 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 15. Carbon Tetrachloride 56-23-5 5 16. Vinyl Acetate 108-05-4 10 17. Bromodichloromethane 75-27-4 75-27-4 75 18. 1,1,2,2-Tetrachloroethane 79-34-5 79-34-5 79-1,2-Dichloropropene 100061-02-6 70 11. Trichloroethene 79-01-6 79-0 | | | | | | 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 | 6. Acetone | 67-64-1 | 10 | 10 | | 8. 1,1-Dichloroethene 75-35-4 5 5 9. 1,1-Dichloroethane 75-35-3 5 5 10. trans-1,2-Dichloroethene 156-60-5 5 5 11. Chloroform 67-66-3 5 5 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 | 7. Carbon Disulfide | 75-15-01 | 5 | 5 | | 9. 1,1-Dichloroethane | 8. 1,1-Dichloroethene | 75-35-4 | | | | 10. trans-1,2-Dichloroethene | 9. 1,1-Dichloroethane | 75-35-3 | | 5 | | 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 1 | | | | | | 12. 1,2-Dichloroethane 107-06-2 5 5 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 1 | II. Chloroform | 67-66-3 | 5 | 5 | | 13. 2-Butanone 78-93-3 10 10 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyl Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 < | 12. 1,2-Dichloroethane | 107-06-2 | | | | 14. 1,1,1-Trichloroethane 71-55-6 5 5 15. Carbon Tetrachloride 56-23-5 5 5 16. Vinyi Acetate 108-05-4 10 10 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethane 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6
10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 108- | 13. 2-Butanone | 78-93-3 | 10 | | | 15. Carbon Tetrachloride 56-23-5 5 16. Vinyl Acetate 108-05-4 10 17. Bromodichloromethane 75-27-4 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 19. 1,2-Dichloropropane 78-87-5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 21. Trichloroethene 79-01-6 5 22. Dibromochloromethane 124-48-1 5 23. 1,1,2-Trichloroethane 79-00-5 5 24. Benzene 71-43-2 5 25. cis-1,3-Dichloropropene 10061-01-5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42 | 14. 1,1,1-Trichloroethane | | | | | 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 <td></td> <td></td> <td></td> <td></td> | | | | | | 17. Bromodichloromethane 75-27-4 5 5 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 <td>16. Vinyl Acetate</td> <td>108-05-4</td> <td>10</td> <td>10</td> | 16. Vinyl Acetate | 108-05-4 | 10 | 10 | | 18. 1,1,2,2-Tetrachloroethane 79-34-5 5 5 19. 1,2-Dichloropropane 78-87-5 5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | 75-27-4 | | | | 19. 1,2-Dichloropropane 78-87-5 5 20. trans-1,3-Dichloropropene 100061-02-6 5 21. Trichloroethene 79-01-6 5 22. Dibromochloromethane 124-48-1 5 23. 1,1,2-Trichloroethane 79-00-5 5 24. Benzene 71-43-2 5 25. cis-1,3-Dichloropropene 10061-01-5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | 18. 1,1,2,2-Tetrachloroethane | 79-34-5 | | 5 | | 20. trans-1,3-Dichloropropene 100061-02-6 5 5 21. Trichloroethene 79-01-6 5 5 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | | | 5 | | 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | | | 5 | | 22. Dibromochloromethane 124-48-1 5 5 23. 1,1,2-Trichloroethane 79-00-5 5 5 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | 21. Trichloroethene | 79-01-6 | 5 | . 5 | | 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | 22. Dibromochloromethane | | | 5 | | 24. Benzene 71-43-2 5 5 25. cis-1,3-Dichloropropene 10061-01-5 5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | | | 5 | | 25. cis-1,3-Dichloropropene 10061-01-5 5 26. 2-Chloroethyl Vinyl Ether 110-75-8 10 10 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | _ | | | 5 | | 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | | | | | 27. Bromoform 75-25-2 5 5 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | 26. 2-Chloroethyl Vinyl Ether | 110-75-8 | 10 | 10 | | 28. 2-Hexanone 591-78-6 10 10 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | 75-25-2 | | | | 29. 4-Methyl-2-pentanone 108-10-1 10 10 30. Tetrachloroethene 127-18-4 5 5 31. Toluene 108-88-3 5 5 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | 28. 2-Hexanone | | | • | | 30. Tetrachloroethene 127-18-4 5 31. Toluene 108-88-3 5 32. Chlorobenzene 108-90-7 5 33. Ethyl Benzene 100-41-4 5 34. Styrene 100-42-5 5 | 29. 4-Methyl-2-pentanone | | | | | 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | | | | | 32. Chlorobenzene 108-90-7 5 5 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 | | 108-88-3 | 5 | 5 | | 33. Ethyl Benzene 100-41-4 5 5 34. Styrene 100-42-5 5 5 35. Total Xylenes 100-42-5 5 5 | | 108-90-7 | | 5 | | 34. Styrene 100-42-5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | 5 | | 35. Total Xylenes 100-42-5 5 5 | | 100-42-5 | | 5 | | • | | 100-42-5 | | 5 | Table 3.5. (Continued) | | | Detec | ction Limits* | |---------------------------------------|------------|-------------|--------------------| | | | Low Water C | Low Soil/Sedimentd | | Semi-Volatiles | CAS Number | ug/L | ug/Kg | | 36. N-Nitrosodimethylamine | 62-75-9 | 10 | 330 | | 37. Phenol | 108-95-2 | 10 | 330 | | 38. Aniline | 62-53-3 | 10 | 330 | | 39. bis(2-Chloroethyl) ether | 111-44-4 | 10 | 330 | | 40. 2-Chlorophenol | 95-57-8 | 10 | 330 | | 41. 1,3-Dichlorobenzene | 541-73-1 | 10 | 330 | | 42. 1,4-Dichlorobenzene | 106-46-7 | 10 | 330 | | 43. Benzyl Alcohol | 100-51-6 | 10 | 330 | | 44. 1,2-Dichlorobenzene | 95-50-1 | 10 | 330 | | 45. 2-Methylphenol | 95-48-7 | 10 | 330 | | 46. bis(2-Chloroisopropyl | | | • • | | cther | 39638-32-9 | 10 | 330 | | 47. 4-Methylphenol | 106-44-5 | 10 | 330 | | 48. N-Nitroso-Dipropylamine | 621-64-7 | 10 | 330 | | 49. Hexachloroethane | 67-72-1 | 10 | 330 | | 50. Nitrobenzene | 98-95-3 | 10 | 330 | | 51. Isophorone | 78-59-1 | 10 | 330 | | 52. 2-Nitrophenol | 88-75-5 | 10 | 330 | | 53. 2,4-Dimethylphenol | 105-67-9 | 10 | 330 | | 54. Benzoic Acid | 65-85-0 | 50 | 1600 | | 55. bis(2-Chloroethoxy) | | | | | methane | 111-91-1 | 10 | 330 | | 56. 2,4-Dichlorophenol | 120-83-2 | 10 | 330 | | 57. 1,2,4-Trichlorobenzene | 120-82-1 | 10 | 330 | | 58. Naphthalene | 91-20-1 | 10 | 330 | | 59. 4-Chloroaniline | 106-47-8 | 10 | 330 | | 60. Hexachlorobutadiene | 87-68-3 | 10 | 330 | | 61. 4-Chloro-3-methylphenol | | | | | (para-chloro-meta-cresol) | 59-50-7 | 10 | 330 | | 62. 2-Methylnaphthalene | 91-57-6 | 10 | 330 | | 63. Hexachlorocyciopentadiene | 77-47-4 | 10 | 330 | | 64. 2,4,6-Trichlorophenol | 88-06-2 | 10 | 330 | | 65. 2,4,5-Trichlorophenol | 95-95-4 | 50 | 1600 | | 66. 2-Chloronaphthalene | 91-58-7 | 10 | 330 [°] | | 67. 2-Nitroaniline | 88-74-4 | 50 | 1600 | | 68. Dimethyl Phthalate | 131-11-3 | 10 | 330 | | | | | | | 69. Acenaphthylene 70. 3-Nitroaniline | 208-96-8 | 10 | 330 | Table 3.5. (Continued) | | | Detec | ction Limits* | |-----------------------------|------------|-------------|-------------------| | | | Low Water C | Low Soil/Sediment | | Semi-Volatiles | CAS Number | ug/L | ug Kg | | 71. Acenaphthene | 83-32-9 | 10 | 330 | | 72, 2,4-Dinitrophenol | 51-28-5 | 50 | 1600 | | 73. 4-Nitrophenol | 100-02-7 | 50 | 1600 | | 74. Dibenzofuran | 132-64-9 | 10 |
330 | | 75. 2,4-Dinitrotoluene | 121-14-2 | 10 | 330 | | 76. 2,6-Dinitrotuluene | 606-20-2 | 10 | 330 | | 77. Diethylphthalate | 84-66-2 | 10 | 330 | | 78. 4-Chlorophenyl Phenyl | | | | | ether | 7005-72-3 | 10 | 330 | | 79. Fluorene | 86-73-7 | 10 | 330 | | 80. 4-Nitroaniline | 100-01-6 | 50 | 1600 | | 81. 4,6-Dinitro-2-methyl- | | | | | phenol | 534-52-1 | 50 | 1600 | | 82. N-nitrosodiphenylamine | 86-30-6 | 10 | 330 | | 83. 4-Bromophenyi Phenyi | | | | | ether | 101-55-3 | 10 | 330 | | 84. Hexachlorobenzene | 118-74-1 | 10 | 330 | | 85. Pentachloropphenol | 87-86-5 | 50 | 1600 | | 86. Phenanthrene | 85-01-8 | 10 | 330 | | 87. Anthracene | 120-12-7 | 10 | 330 | | 88. Di-n-butylphthalate | 84-74-2 | 10 | 330 | | 89. Fluoranthene | 206-44-0 | 10 | 330 | | 90. Benzidine | 92-87-5 | 50 | 1600 | | 91. Pyrene | 129-00-0 | 10 | 330 | | 92. Butyl Benzyl | | | | | Phthalate | 85-68-7 | 10 | 330 | | 93. 3,3'-Dichlorobenzidine | 91-94-1 | 20 | 660 | | 94. Benzo(a)anthracene | 56-55-3 | 10 | 330 | | 95. bis(2-ethylhexyl) | | | | | phthalate | 117-81-7 | 10 | 330 | | 96. Chrysene | 218-01-9 | 10 | 330 | | 97. Di-n-octyl Phthalate | 117-84-0 | 10 | 330 | | 98. Benzo(b)fluoranthene | 205-99-2 | 10 | 330 | | 99. Benzo(k)fluoranthene | 207-08-9 | 10 | 330 | | 100. Benzo(a)pyrene | 50-32-8 | 10 | 330 | | 101. Indeno(1,2,3-cd)pyrene | 193-39-5 | 10 | 330 | | 102. Dibenz(a,h)anthracene | 53-70-3 | 10 | 330 | | 103. Benzo(g,h,i)perylene | 191-24-2 | 10 | 330 | | (O) | ., | . • | | Table 3.5. (Continued) | | • | Detec | tion Limits* | |--------------------------|------------|------------|-------------------| | | | Low Watere | Low Soil/Sediment | | Pesticides | CAS Number | ug/L | ug/Kg | | 104. alpha-BHC | 319-84-6 | 0.05 | 8.0 | | 105. beta-BHC | 319-85-7 | 0.05 | 8.0 | | 106. delta-BHC | 319-86-8 | 0.05 | 8.0 | | 107. gamma-BHC (Lindane) | 58-89-9 | 0.05 | 8.0 | | 108. Heptachlor | 76-44-8 | 0.05 | 8.0 | | 109. Aldrin | 309-00-2 | 0.05 | 8.0 | | 110. Heptachlor Epoxide | 1024-57-3 | 0.05 | 8.0 | | III. Endosulfan I | 959-98-8 | 0.05 | 8.0 | | 112. Dieldrin | 60-57-1 | 0.10 | 16.0 | | 113. 4,4'-DOE | 72-55-9 | 0.10 | 16.0 | | 114. Endrin | 72-20-8 | 0.10 | 16.0 | | 115. Endosulfan II | 33213-65-9 | 0.10 | 16.0 | | 116. 4,4'-DDD | 72-54-8 | 0.10 | 16.0 | | 117. Endrin Aldehyde | 7421-93-4 | 0.10 | 16.0 | | 118. Endosulfan Sulfate | 1031-07-8 | 0.10 | 16.0 | | 119. 4,4-'DDT | 50-29-3 | 0.10 | 16.0 | | 120. Endrin Ketone | 53494-70-5 | 0.10 | 16.0 | | 121. Methoxychlor | 72-43-5 | 0.5 | 80.0 | | 122. Chlordane | 57-74-9 | 0.5 | 80.0 | | 123. Toxaphene | 8001-35-2 | 1.0 | 160.0 | | 124. AROCLOR-1016 | 12674-11-2 | 0.5 | 80.0 | | 125. AROCLOR-1221 | 11104-28-2 | 0.5 | 80.0 | | 126. AROCLOR-1232 | 11141-16-5 | 0.5 | 80.0 | | 127. AROCLOR-1242 | 53469-21-9 | 0.5 | 80.0 | | 128. AROCLOR-1248 | 12672-29-6 | 0.5 | 80.0 | | 129. AROCLOR-1254 | 11097-69-1 | 1.0 | 160.0 | | 130. AROCLOR-1260 | 11096-82-5 | 1.0 | 160.0 | | | · - • | | | ^aMedium Water Contract Required Detection Limits (CRDL) for Volatile HSL Compounds are 100 times the individual Low Water CRDL. bMedium Soil/Sediment Contract Required Detection Limits (CRDL) for Volatile HSL Compounds are 100 times the individual Low Soil/Sediment CRDL. ^CMedium Water Contract Required Detection Limits (CRDL) for Semi-Volatile HSL Compounds are 100 times the individual Low Water CRDL. dMedium Soil/Sediment Contract Required Detection Limits (CRDL) for Semi-Volatile HSL Compounds are 60 times the individual Low Soil/Sediment CRDL. ### Table 3.5. (Continued) eMedium Water Contract Required Detection Limits (CRDL) for Pesticide HSL Compounds are 100 times the individual Low Water CRDL. Medium Soil/Sediment Contract Required Detection Limits (CRDL) for Pesticide HSL compounds are 60 times the individual Low Soil/Sediment CRDL. *Detection limits listed for soil/sediment are based on wet weight. The detection limits calculated by the laboratory for soil/sediment, calculated on dry weight basis, as required by the contract, will be higher. **These are the EPA detection limits under the Contract Laboratory Program. Specific detection limits are highly matrix dependent. The detection limits listed herein are provided for guidance and may not always be achievable. Table 3.6. Elements Determined by Inductively Coupled Plasma Emission or Atomic Absorption Spectroscopy | Element | Contract Required Detection Level ^{1,2} (ug/L) | |------------|---| | | | | Aluminum | 200 | | Antimony | 60 | | Arsenic | 10 | | Barium | 200 | | Beryllium | 5 | | Cadmium | 5 | | Calcium | 5000 | | Chromium | 10 | | Cobalt | 50 | | Copper | 25 | | Iron | 100 | | Lead | 5 | | Magnesium | 5000 | | Manganese | 15 | | Mercury | 0.2 | | Nickel | . 40 | | Potassium | 5000 | | Selenium | 5 | | Silver | 10 | | Sodium | 5000 | | Thallium | . 10 | | Vanadium | 50 | | Zinc | 20 | | Cesium | 200 | | Molybdenum | . 40 | | Strontium | 200 | | Cyanide | 10 | Note: Detection limits in soil/sediment are numerically equivalent to those listed above with concentration units of mg/kg. If the sample concentration exceeds two times the detection limit of the instrument or method in use, the value may be reported even though the instrument or method detection limit may not equal the contract required detection limit. This is illustrated in the example below: Higher detection levels may also be used in the following circumstances. # Table 3.6. (Continued) For lead: Method in use - ICP Instrument Detection Limit (IDL) = 40 Sample Concentration = 85 Contract Required Detection Limit (CRDL) = 5 The value of 85 may be reported even though instrument detection limit is greater than required detection level. The instrument or method detection limit must be documented. ²These CRDL are the instrument detection limits obtained in pure water. met using the procedure in Exhibit E. The detection limits for samples may be considerably higher depending on the sample matrix. ### 4. SAMPLING PROCEDURES Procedures for collecting samples and for performing all related field activities are described in detail in Appendix A of the IGMP/CSPCP Sampling Plan. Adherence to these procedures will be confirmed by the CEARP Quality Assurance Officers (Rockwell International and subcontractor) by quality assurance audits. # 5. SAMPLE CUSTODY CEARP field custody procedures are described in Section 7.2 of the IGMP/CSPCP Sampling Plan. Laboratory custody procedures for the analytical laboratories are described in Appendix A. ### 6. CALIBRATION PROCEDURES AND FREQUENCY Standard commercial calibration procedures will be used by the analytical laboratories, as specified in Appendix A. Calibration of equipment used to perform geotechnical testing will be in accordance with that specified in the ASTM Method D 422-63 for hydrometer and sieve analyses (Annual Book of ASTM Standards, Volume 04.08, 1984). The equipment calibrations, including those for ovens, thermometers and balances, shall be done at a minimum of every six months and prior to large scale testing. Field instruments will be calibrated according to procedures presented in Appendixes A and B of the IGMP/CSPCP Sampling Plan. A calibration log book will be assigned to each field instrument, and all calibrations will be documented in the log books. # 7. ANALYTICAL PROCEDURES Laboratory analyses will follow methods described in Tables 3.1, 3.2, 3.3, and 3.4. Deviation from those methods, if required, will be presented in the SSMPs. # 8. DATA REDUCTION, VALIDATION, AND REPORTING Analytical laboratories will provide results to the Rockwell International CEARP Manager, the Subcontractor Project Manager, and Quality Assurance Officers. These data will include results and documentation for blanks and duplicates, matrix spikes, and forms summarizing analytical precision and accuracy. Analytical data, including quality control sample analysis, will be entered into the technical data base. The analyses will be grouped into lots, with quality control samples associated with a particular lot. The analyses of quality control samples will be compared to theoretical known concentrations of those samples. If analyses do not meet acceptance criteria, the analytical laboratory may be asked to re-analyze the samples for parameters which do not exceed holding times. Analyses which cannot meet acceptance criteria, will be labelled as unacceptable. All parameter-specific values for a lot in which the quality control analyses did not meet acceptance criteria, will be removed from the technical data base. Acceptance criteria for analyses of parameters for quality control samples (knowns) will be based on the theoretical known value furnished by the laboratory that prepared the sample. The theoretical known value is stated as a range of values. The analysis of the sample must be within the stated range of the theoretical known, plus or minus 10% of the range. An exception is analyses at or near the limit of detection. If the lower limit of the range of the theoretical known value is less than twice the limit of detection, an acceptable analysis includes the range from the limit of detection to the upper limit of the theoretical range, plus 10%. Analytical reports from a field laboratory, if used, and the geotechnical laboratory will include all raw data, documentation of reduction methods, and related quality assurance/quality control data. These data will be assessed by verification of reduction results and confirmation of compliance with quality assurance/quality control requirements. Raw data from field measurements and sample collection activities used in project reports will be appropriately identified. Where data have been reduced or summarized, the method of reduction will be documented. The Quality Assurance Officers will review results of Quality Control-acceptance evaluations and will document acceptance or non-acceptance of data. The Quality Assurance Officers will maintain records
of quality control-acceptance tests. These records will be subject to independent audit, which may include Los Alamos National Laboratory. # 9. INTERNAL QUALITY CONTROL PROCEDURES Internal quality control procedures for the laboratory are those specified in Appendix A. These specifications include types of audits required (e.g., sample spikes, surrogate spikes, reference samples, controls, and blanks), frequency of audits, compounds to be used for sample spikes and surrogate spikes, and quality control acceptance criteria for audits. The quality control checks and acceptance for data from a field laboratory, if used, and the geotechnical laboratory are described above in Sections 3.2 and 3.3. Quality control procedures for field measurements (pH, conductivity, and temperature) are limited to checking the reproducibility of the measurement in the field by obtaining multiple readings and/or by calibrating the instruments (where appropriate). Quality control of field sampling will involve collecting field duplicates and blanks. ### 10. PERFORMANCE AND SYSTEMS AUDITS For each activity where samples are collected, a performance audit investigating conformance with quality control procedures will be conducted (Appendix A) at the discretion of the Rockwell International CEARP manager, Subcontractor Project Manager, and Quality Assurance Officers. This audit will be scheduled to allow oversight of as many different field activities as possible. This audit will be performed by the Quality Assurance Officers or their designees. A written report of the results of this audit, along with a notice of nonconformity (if necessary), will be submitted to the following individuals: - Rockwell International CEARP Manager - Subcontractor Project Manager - Subcontractor Site Manager At least one systems audit will be performed during the project. The audit will verify that a system of quality control measures, procedures, reviews, and approvals was established for all activities and is being used by project personnel. It will also verify that the system for project documentation is being used and that all quality control records, along with required quality control reviews, approvals, and activity records are being maintained. A standard checklist for systems audits will be used. The systems audit will be conducted by the Quality Assurance Officers and/or Los Alamos National Laboratory. A final report will be prepared which summarizes any deviations from approved methods and their impacts on the project results. After consultation with the CEARP Manager (and Subcontractor Project Manager), the Quality Assurance Officers may schedule systems audits of the participating laboratories. At a minimum, the systems audit would include inspection of laboratory notebooks, control sheets, logsheets, computer files, and equipment calibration and maintenance records. If scheduled, system audits will be executed by individuals identified in Section 2.3 of this document. Performance and systems audits of analytical laboratories will be scheduled and executed by the laboratory Quality Assurance Officers. Performance audits are conducted at least semiannually. # 11. PREVENTIVE MAINTENANCE This section applies solely to field equipment. Preventive maintenance will be addressed by checks of equipment prior to initiation of field operations, to allow time for replacement of malfunctioning equipment. The Subcontractor Site Manager will be responsible for implementing and documenting these procedures on a weekly basis during the period of use. # 12. LABORATORY DATA ASSESSMENT PROCEDURES Analytical data from laboratories is assessed for accuracy, precision and completeness by the laboratory Quality Assurance Officers, using standard procedures. Assessment of data generated by analytical laboratories is initiated and continued at three administrative levels. The bench chemist directly responsible for the test knows current operating acceptance limits. He/she can directly accept or reject generated data and consult with his/her immediate supervisor for any corrective action. Once the bench chemist has reported the data as acceptable, he/she initials the report sheet. Any out-of-control results are flagged and a note is made as to why the results were reported. The chief chemist receives the data sheets and reviews the quality control data that accompanied the sample run. After checking the reported data for completeness and quality control results, the chief chemist either initials the report sheet or sends it back to the bench chemist for rerunning of samples. The Quality Control Coordinator reviews data forwarded to him/her as acceptable by the chief chemist. Any remaining out-of-control results that, in the opinion of the Quality Control Coordinator, do not necessitate rerunning of the sample, are flagged, and a memo is written to the data user regarding utility of the data. Data generated from all analyses are given a final review by the laboratory Quality Assurance Officers. #### 13. CORRECTIVE ACTION PROCEDURES The Quality Assurance Officers and their audit teams will prepare a report describing the results of the performance and/or system audits. If unacceptable conditions (e.g., failure to have/use procedures), unacceptable data, nonconformity with the quality control procedures, or a deficiency are identified, the Quality Assurance Officers will notify the Rockwell International CEARP Manager of the results of the audit in writing. They will also state if the nonconformity is of significance for the program and recommend appropriate corrective actions. The Rockwell International CEARP Manager will be responsible for ensuring that corrective is developed and initiated and that, if necessary, special expertise not normally available to the project team is made available. The subcontractor will be responsible for carrying out corrective actions. The subcontractor will also ensure that additional work is not performed until the nonconformity is corrected. Corrective action may include - reanalyzing the samples if holding time permits, - resampling and reanalyzing, - evaluating and amending the sampling and analytical procedures, and - accepting the data and acknowledging its level of uncertainty. The Rockwell International CEARP Manager will be responsible for ensuring that corrective action was taken, and that it adequately addressed the nonconformity. After corrective action is taken, the Quality Assurance Officer responsible for the audit will document its completion in a written report. The report will indicate any identified findings, corrective action taken, follow-up action, and final recommendations. The report will be sent to the Rockwell International CEARP Manager. Project staff will be responsible for initiating reports on suspected nonconformities in field activities and deliverables or documents. ### 14. QUALITY ASSURANCE REPORTS The Rockwell International CEARP Manager will rely on written reports, memoranda documenting data assessment activities, performance and systems audits, nonconformity notices, corrective action reports, and quality assurance notices to enforce quality assurance requirements. The Los Alamos National Laboratory will be issued a written quality assurance report at the end of each stage of site characterization (remedial investigation) by the Rockwell International CEARP Manager. Records will be maintained to provide evidence of quality assurance activities. Proper maintenance of quality assurance records is essential to provide support for evidential proceedings and to assure overall quality of the investigation. A quality assurance records index will be started at the beginning of the project. All information received from outside sources or developed during the project will be retained by the project team. Upon termination of an individual task or work assignment, working files will be processed for storage as quality assurance records. Upon termination of the project, complete documentation records (for example, chromatograms, spectra, and calibration records) will be archived as required by DOE Order 1324.2A (Records Deposition). The Rockwell International CEARP Manager and the Los Alamos National Laboratory CEARP Rocky Flats Plant Team Leader will be responsible for ensuring that the Quality Assurance records are being properly stored and that they can be retrieved. ### 15. REFERENCES DOE 1986b: "Comprehensive Environmental Assessment and Response Program Phase 1: Draft Installation Assessment Rocky Flats Plant," US Department of Energy unnumbered draft report, April 1986. # APPENDIX A QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) # 1. LABORATORY QA/QC PROGRAM This appendix to the quality assurance/quality control plan describes the organization and procedures used to produce reliable analytical data. These procedures are applicable to performing chemical, radiological, and geotechnical analyses on waste or environmental samples as appropriate. The ultimate responsibility for the generation of reliable laboratory data rests with the laboratory management. Laboratory management is vested with the authority to establish those policies and procedures to ensure that only data of the highest attainable caliber are produced. Laboratory management, as well as the laboratory Quality Assurance/Quality Control Officer are responsible for the implementation of the established policies and procedures. Laboratory management has the following responsibilities: - direct implementation of the quality assurance program, - ensure that their personnel are adequately trained to perform analyses. - ensure that equipment and instrumentation under their control are calibrated and functioning properly, and - review and perform subsequent corrective action on internal and external audits. The Quality Assurance/Quality Control Officer has the following responsibilities: - on-going review of individual quality assurance procedures. -
providing assistance in the development and implementation of specific quality assurance plans for special analytical programs, - coordination of internal and external quality assurance audits. - coordination of quality assurance training, - review of special project plans for consistency with organizational requirements and advising laboratory management of inconsistencies, and - overall coordination of the laboratories' quality assurance program manual. #### 1.2. SAMPLE MANAGEMENT On notification of the sampling and analyses effort, the laboratory will create a file to maintain records associated with the activity. In addition to administrative information, requests for sample containers, preservatives, and required analyses will be included in the file. Sample bottles will be prepared by the laboratory and made available to the sampling team. The bottles will be prepared according to the analysis plan procedures and will include sample preservatives appropriate to the analytes and matrices of concern. Addition of preservatives to sample shall be recorded on chain-of-custody forms. Samples received at the laboratories will be inspected for integrity, and any field documentation will be reviewed for accuracy and completeness. Chain-of-custody and sample integrity problems will be noted and recorded on the chain-of-custody forms during sample log-in. Chain-of-custody forms and deficiency notices will be maintained in the file. Any deficiencies will be brought to the attention of the Rockwell International CEARP Manager who will advise the laboratory on the desired disposition of the samples. Each sample that is received by the laboratory will be assigned a unique sequential sample number which will identify the sample in the laboratory's internal tracking system. References to a sample in any communication will include the assigned sample number. Samples will be stored in a locked refrigerator at 4°C. The temperature of the storage refrigerators will be monitored and recorded daily by the sample custodian. Sample fractions and extracts will also be stored under these same conditions. #### 1.3. ANALYTICAL SYSTEMS # 1.3.1. Instrument Maintenance Instruments will be maintained in accordance with manufacturers' specifications. More frequent maintenance may be dictated dependent on operational performance. Instrument logs will be maintained to document the date, type, and reason for any maintenance performed. Contracts on major instruments with manufacturers and service agencies may be used to provide routine preventive maintenance and to ensure rapid response to emergency repair service. ## 1.3.2. Instrument Calibration Before any instrument is used, it will be calibrated using known reference materials. All sample measurements will be made within the calibrated range of the instrument. A record of calibration will be kept in an equipment log. #### 1.3.3. Personnel Training Prior to conducting analyses on an independent basis, analysts will be trained by experienced personnel in the complete performance of the analytical method. Analysts may require training at instrument manufacturers' training courses. The analyst will be required to independently generate data on several method and/or matrix spikes to demonstrate proficiency in that analytical method. The type of data to be generated will be dependent on the analytical method to be performed. Results of this "certification" will be reviewed by laboratory management for adequacy. Method blanks and method spikes will be required in every lot of samples analyzed, thus performance on a day-to-day basis can be monitored. Laboratory management and the Laboratory Quality Assurance/Quality Control Officer are responsible for ensuring that samples are analyzed by only competent analysts. # 1.4. ANALYTICAL METHODS # 1.4.1. Gas Chromatography/Mass Spectroscopy Mass spectrometers will be tuned on a daily basis to manufacturer's specifications with FC-43. In addition, once per shift (8 hours) these instruments will be tuned with decafluorotriphenylphosphine (DFTPP) or 4-bromo-fluorobenzene (BFB) for semi-volatiles or volatiles, respectively. Ion abundance will be within the window dictated by the requirements of the specific protocols. Once an instrument has been tuned, initial calibration curves for analytes (appropriate to the analyses to be performed) will be generated for at least three solutions containing known concentrations of authentic standards of compounds of concern. The calibration curve will bracket the anticipated working range of analyses. Calibration data, to include the correlation coefficient, will be entered into laboratory notebooks to maintain a permanent record of instrument calibrations. During each operating shift, a midpoint calibration standard will be analyzed to verify that the instrument responses are still within the initial calibration determinations. The calibration check compounds will be those analytes used in the EPA contract laboratory program's multicomponent analyses (e.g., priority pollutants and hazardous substances list) with the exception that benzene will be used in place of vinyl chloride (volatiles) and di-n-octyl phthalate will be deleted from the semi-volatile list. The response factor drift will be calculated and recorded. If significant (>30%) response factor drift is observed, appropriate corrective action will be taken to restore confidence in the instrumental measurements. All GC/MS analyses will include analyses of a method blank, a method spike, and a method spike duplicate in each lot of samples. In addition, appropriate surrogate compounds specified in EPA methods will spiked into each sample. Recoveries from method spikes and surrogate compounds will be calculated and recorded on control charts to maintain a history of system performance. Duplicate samples will be analyzed for analytical lots of twenty (20) or more samples. Audit samples will be analyzed periodically to compare and verify laboratory performance against standards prepared by outside sources. # 1.4.2. Gas Chromatography and High Performance Liquid Chromatography Gas chromatographs and high performance liquid chromatographs will be calibrated prior to each day of use. Calibration standard mixtures will be prepared from appropriate reference materials and will contain analytes appropriate for the method of analysis. Working calibration standards will be prepared fresh daily. The working standards will include a blank and a minimum of three concentrations to cover the anticipated range of measurement. At least one of the calibration standards will be at or below the desired instrument detection limit. The correlation coefficient of the plot of "known" versus "found" concentrations must be at least 0.996 in order to consider the responses linear over a range. If a correlation coefficient of 0.996 cannot be obtained, additional standards must be analyzed to define the calibration curve. A midpoint calibration check standard will be analyzed each operating shift (8 hours) to confirm the validity of the initial calibration curve. The check standard must be within twenty (20) percent of the initial response curve to demonstrate that the initial calibration curve is still valid. Calibration data, to include the correlation coefficient, will be entered into coefficient. At least one method blank and two method spikes will be included in each laboratory lot of samples. Regardless of the matrix being processed, the method spikes and blanks will be in aqueous media. Method spikes will be at a concentration of approximately five (5) times the detection limit. The method blanks will be examined to determined if contamination is being introduced in the laboratory. The method spikes will be examined to determine both precision and accuracy. Accuracy will be measured by the percent recovery of the spikes; precision will be measured by the reproducibility of method spikes. # 1.4.3. Atomic Absorption Spectrophotometry Atomic absorption spectrophotometers will be calibrated prior to each day of use. Calibration standards will be prepared from appropriate reference materials, and working calibration standards will be prepared fresh weekly. The working standards will include a blank and a minimum of five concentrations to cover the anticipated range of measurement. Duplicate injections will be made for each concentration. At least one of the calibration standards will be at or below the desired instrument detection limit. The correlation coefficient of the plot of "known" versus "found" concentrations will be at least 0.996 in order to consider the responses linear over a range. If a correlation coefficient of 0.996 cannot be achieved, the instrument will be recalibrated prior to analysis of samples. Calibration data, to include the correlation coefficient, will be entered into laboratory notebooks to maintain a permanent record of instrument calibrations. At least one method blank and two method spikes will be included in each laboratory lot of samples. Regardless of the matrix being processed, the method spikes and blanks will be in aqueous media. Method spikes will be at a concentration of approximately five (5) times the detection limit. The method blanks will be examined to determine if contamination is being introduced in the laboratory and will be introduced at a frequency of one per analytical lot or five (5) percent of the samples, whichever is more. The method spikes will be examined to determine both precision and accuracy. Accuracy will be measured by the percent recovery of the spikes. The recovery must be within the range of 75-125 percent to be considered acceptable. Precision will be measured by the reproducibility of both method spikes. Results must agree within twenty (20) percent in order to be considered acceptable. ## 1.4.4. Spectrophotometric Methods Spectrophotometers will be calibrated prior to each day of use. Calibration standards will be prepared
from reference materials appropriate to the analyses being performed, and working standards will include a blank and a minimum of five (5) concentrations to cover the anticipated range of measurement. At least one of the calibration standards will be at or below the desired instrument detection limit. The correlation coefficient of the plot of "known" versus "found" concentration will be at least 0.996 in order to consider the responses linear over a range. If a correlation coefficient of 0.996 cannot be achieved, the instrument will be recalibrated prior to the analysis of samples. Calibration data, to include the correlation coefficient, will be entered into laboratory notebooks to maintain a permanent record of instrument calibrations. At least one method blank and two method spikes will be included in each laboratory lot of samples. Regardless of the matrix being processed, the method spikes will be at a concentration of approximately five (5) times the detection limit. The method blanks will be examined to determine if contamination is being introduced in the laboratory. Accuracy will be measured by the percent recovery of the spikes. The recovery must be in an acceptable range (based on EPA data for the method of interest) in order to be considered acceptable. Precision will be measured by the reproducibility of both method spikes. Results must agree within acceptable limits (based on EPA data) in order to be considered acceptable. #### 1.5. REFERENCE MATERIALS Whenever possible, primary reference materials will obtained from the National Bureau of Standards (NBS) or the U.S. Environmental Protection Agency (EPA). In absence of available reference materials from these organizations, other reliable sources may be sought. Reference materials will be used for instrument calibrations, quality control spikes, and/or performance evaluations. Secondary reference material may be used for these functions provided that they are traceable to an NBS standard or have been to an NBS standard within the laboratory. #### 1.6. REAGENTS Laboratory reagents will be of a quality to minimize or eliminate background concentrations of the analyte to be measured. Reagents must also not contain other contaminants that will interfere with the analyte of concern. #### 1.7. CORRECTIVE ACTIONS When an analytical system is deemed to be questionable or out-of-control at any level of review, corrective action will be taken. If possible, the cause of the out-of-control situation will be determined, and efforts will be made to bring the system back into control. Demonstration of the restoration of a reliable analytical system will normally be accomplished by generating satisfactory calibration and/or quality control sample data. The major consideration in performing corrective action will be to ensure that only reliable data are reported from the laboratory. The Rockwell International CEARP Manager will be informed of the problem and all corrective actions taken. #### 1.8. DATA MANAGEMENT # 1.8.1. Data Collection All data will be recorded in laboratory notebooks. Laboratory notebooks will contain: - Date and time of processing - Sample numbers - Project - Analyses or operation performed - Calibration data - Quality control samples included - Concentrations/dilutions required - Instrument readings - Special observations - Analyst's signature. Copies of laboratory notebooks will be provided to the Rockwell International CEARP Manager on request. #### 1.8.2. Data Reduction Data reduction will be performed by the individual analysts. The complexity of the data reduction will be dependent on the specific analytical method and the number of discrete operations (extractions, dilutions, and concentrations) involved. For those methods utilizing a calibration curve, sample responses will be applied to the linear regression line to obtain an initial raw result which will be factored into equations to obtain the estimate of the concentration in the original sample. Rounding will not be performed until after the final result is obtained, to minimize rounding errors, and results will not normally be expressed in more than two (2) significant figures. Copies of all raw data and the calculations used to generate the final results will be retained in the laboratory file to allow reconstruction of the data reduction process at a later date. Copies of these records will be provided to the Rockwell International CEARP Manager on request. #### 1.8.3. Data Review System reviews will be performed at all levels. The individual analyst will review the quality of data through calibration checks, quality control sample results, and performance evaluation samples. These reviews will be performed prior to submission of data to the laboratory management. Laboratory management will review data for consistency and validity to determine if program requirements have been satisfied. Selected hard copy output of data (chromatograms, spectra, etc.) will be reviewed to ensure that results are interpreted correctly. Unusual or unexpected results will be reviewed, and a resolution will be made as to whether the analysis should be repeated. In addition, laboratory management, will recalculate selected results to verify the calculation procedure. Any abnormalities will be brought to the attention of the Rockwell International CEARP Manager. The Quality Assurance Officer will independently conduct a complete review of results from randomly selected samples to determine if laboratory and program quality assurance/quality control requirements have been met. Deviations from requirements will be reported to the laboratory management and Rockwell International CEARP Manager for resolution. Non-routine audits may be performed. #### 1.8.4. Data Reporting Reports will contain final results (uncorrected for blanks and recoveries), methods of analysis, levels of detection, surrogate recovery data, and method blanks data. In addition, special analytical problems, and/or any modifications of referenced methods will be noted. The number of significant figures reported will be consistent with the limits of uncertainty inherent in the analytical method. Consequently, most analytical results will be reported to no more than two (2) significant figures. Data will be reported in units commonly used for the analyses performed. Concentrations in liquids will be expressed in terms of weight per unit volume (e.g., milligrams per liter). Concentrations in solid or semi-solid matrices will be expressed in terms of weight per unit weight of sample (e.g., micrograms per grams). Reported detection limits will be those specified by the analytical method. # 1.8.5. Data Archiving The laboratory will maintain on file all of the raw data (including calibration data), laboratory notebooks, and other pertinent documentation. This file will be maintained at the laboratory for a period of time consistent with Rocky Flats Plant's requirements. At the end of that time frame, all these records will be given to Rocky Flats Plant. # 2. PERFORMANCE AND SYSTEM AUDITS Quality assurance audits will be conducted. System audits will be conducted at random, unscheduled intervals at least annually. Audits will be planned, organized, and clearly defined before they are initiated. Auditors will identify nonconformances or deficiencies. These will be reported and documented so that corrective actions can be initiated through appropriate channels. Corrective actions will be followed up with a compliance review. A report on each audit will be sent to the Rockwell International CEARP Manager. #### 2.1. FIELD AUDITS Unannounced field audits, investigating conformance with QA/QC procedures, will be performed. A typical checklist for this type of audit is shown in Table A-1. A written report on the results of this audit will be submitted to the Rockwell International CEARP Manager. #### 2.2. CORRECTIVE ACTION After each audit, auditors will identify nonconformances in a written nonconformance notice and initiate corrective action through the Rockwell International CEARP Manager. The nonconformance notice will describe any nonconforming conditions and set a date for response and corrective action(s). The Subcontractor Project Manager will prepare a written proposal for corrective action for review and approval by the Rockwell International CEARP Manager. When approved, the proposed corrective action(s) will be implemented. Follow-up review will be performed by the auditor to confirm that the corrective actions have been implemented. #### Table A.1. Field Audit | Project | Site ManagerField Team Leader | | |---------------------------------|-------------------------------|--| | Site Location | | | | Auditor | Date | | | Audit Ovestion | Yes No Comment/Documentation | | | 1. Was a site-specific sampling | | | - and analytical plan followed? - Was a field team leader appointed? - Was the site health and safety coordinator present? - 4. Were field team members familiar with the sampling plan? - 5. Was a briefing held offsite, before any site work was begun, to acquaint personnel with sampling equipment and assign field responsibilities? - 6. Was the daily briefing and safety check conducted? - 7. Was a completed "Site Personnel Protection and Safety Evaluation Form' read and signed by all visitors and personnel entering the site? - Was a field notebook assigned to the field team leader? - Were entries made in the field notebook? - 10. Were sampling stations located correctly? - 11. Did the number and location of samples collected follow the site-specific sampling plan? # Table A.I. (Continued) | Project | Site Manager | |----------------|------------------------------| | Site Location | Field Team Leader | | Auditor | Date | | Audit Ouestion | Yes No Comment/Documentation | # 12. Were samples identified as described in the site-specific - sampling plan? - 13. Were samples collected following procedures specified in the site-specific plan?
- 14. Was a chain-of-custody form filled out for all samples collected? Were all sample transfers documented? - 15. Were samples preserved as specified in the site-specific sampling plan? - 16. Were the number, frequency, and type of samples (including blanks and duplicates) collected as described in the site-specific sampling plan? - 17. Were the number, frequency, and type of measurements and observations taken as specified in the site-specific sampling plan? - 18. Were blank and duplicate samples properly identified? - 19. Was a record maintained of calibration of field equipment? - 20. Was field equipment calibrated as required? # Table A.1. (Continued) | Project | Site Manager | |----------------|------------------------------| | Site Location | Field Team Leader | | Auditor | Date | | Audit Ouestion | Yes No Comment/Documentation | - 21. Have any procedures been revised? - 22. Are revisions to procedures adequately documented? - 23. Was the document log for chain-of-custody records and other sample traffic control forms maintained? - 24. Have any accountable documents been lost? - 25. Did drilling and well construction follow procedures outlined in the sampling plan? - 26. Were the activities being conducted compatible with the environmental conditions? # APPENDIX A # 1. DRILLING AND SAMPLING #### 1.1. PURPOSE To provide procedures for borehole drilling and sampling. #### 1.2. DEFINITIONS - Monitor Wells: Two-inch wells designed for monitoring water levels and groundwater quality. - Alluvial Wells: Monitor wells completed in surficial materials (Rocky Flats Alluvium, colluvium, or valley fill alluvium). - Bedrock Wells: Monitor wells completed in saturated sandstone of the Arapahoe or Laramie Formations. - Piezometers: Two-inch wells completed in claystone of the Arapahoe or Laramie Formations for monitoring water levels. - Surface Casing: Casing set and grouted through surficial materials in bedrock wells to prevent interconnection of shallow and deep flow systems. #### 1.3. RESPONSIBILITY The Rockwell International CEARP Manager is responsible for the drilling and sampling program. The Subcontractor Site Manager is responsible for direct supervision of drilling and sampling. The Subcontractor Site Manager will report daily to the Rockwell International CEARP Manager on drilling and sampling progress including any problems encountered implementing the field program. The Field Team Leader is responsible for supervision of drilling, verification of drilled depths, and approval of the Driller's daily logs. The Field Team Leader is also responsible for sample collection, handling, and field screening. The Driller is responsible for operating and maintaining the rig and auxiliary equipment, for keeping a clean and safe working environment, and for assisting the Field Team Leader with sampling. # 1.4. EQUIPMENT AND MATERIALS - Drilling rig with auger, rotary tricone, and diamond coring systems - Water truck - Rod trailer - Maintenance and access vehicles - Miscellaneous drilling equipment - Volatile organic-free water - Electric well sounder - Glass jars and lids - Labels - Core boxes - Plastic wrap - Pipe wrenches - Rock hammer - Pocket knife - Hand lens - Tape measure divided in tenths of a foot - Dropper bottle of hydrochloric acid - Protractor - Marking pens and pencils - Field notebook - Log of boring form ## 1.5. PROCEDURES #### 1.5.1. Alluvial Wells - (1) Alluvial wells will be drilled with hollow stem augers where practical. Boulders in the Rocky Flats Alluvium may prohibit the use of hollow stem augers, in which case alternative drilling methods such as tricone rotary will be used. Sampling through surficial materials will be performed by continuous sampling through the hollow stem augers (with split tube inner barrel) or by split spoon, depending on the materials. - (2) Alluvial wells will be drilled approximately one to three feet into bedrock. They will be terminated after confirming the presence and lithology of bedrock. (3) The hole diameter will be a minimum of four inches. The use of hollow stem augers eliminates the need for drilling fluids; however, some volatile organic-free water may be used if hole stability is a problem. In no event will mud or foaming agents be used. ## 1.5.2. Bedrock Wells - (1) Bedrock wells will be augered and rotary drilled through surficial materials and weathered bedrock as described above. - (2) Upon penetration of unweathered bedrock, steel surface casing will be set and neat cement grout will be placed in the annulus through a tremie pipe or by pushing a plug of cement through the surface casing. The surface casing will be approximately 6 in. in diameter. - (3) Grout will be neat Type I or Type II Portland cement, mixed with volatile organic-free water at a mix ratio of 6 to 9 gal. of water per 94-lb bag of cement. Grout will be allowed to set at least twenty-four hours before drilling resumes. - (4) The hole will proceed through bedrock by rotary coring (size NX or larger), using bentonite mud, volatile organic-free water, air mist (air and volatile organic-free water), or filtered air. - (5) Drilling will progress into bedrock until at least 3 ft of saturated sandstone within a 10-ft interval of bedrock is encountered, or until the well is approximately 100 ft deep. Wells may be drilled deeper than 100 ft to fully penetrate a sandstone. - (6) After drilling through sufficient sandstone thickness (as defined above), the hole will be cleaned and stabilized for packer testing. - (7) Geophysical logging may be performed in some holes after packer testing. - (8) After packer testing and geophysical logging are completed, the hole will be reamed, if necessary, to a minimum of 4 in. for well installation. # 1.5.3. Sampling and Logging - (1) The Driller will provide either continuous samples from a split tube sampler, split-spoon samples, rotary cuttings, or NX core, depending on the drilling method. - (2) As drilling progresses, the Field Team Leader will confirm sample depths with the Driller, describe the samples, and field screen the sample for organic or radioactive contamination. Descriptions and screening results will be recorded in the field notebook and on a log of boring form. The Field Team Leader will also note the depth at which groundwater is encountered. - (3) Sample descriptions will include the following items as appropriate: - Borehole designation - Time and date - Interval footage and recovered footage - Name of unit and/or brief rock name - Characteristic structures of the unit - Fossils - Lithologic description - Nature of contacts - · Water content - Organic and radioactive field screening results. - (4) Auger and rotary cuttings will be bottled in glass jars and labeled. Intervals designated for chemical analyses will be placed in jars and stored on ice in coolers. These samples will be delivered to the onsite laboratory, if an onsite laboratory is used, within 3 hours of collection. - (5) Core continuous split tube samples, and split-spoon samples will be wrapped with clear plastic to prevent rapid drying and cracking and placed in NX or NC size core boxes as appropriate. Wooden blocks will be inserted in the boxes at the beginning and end of runs to mark footages and will indicate lost core zones. Core boxes will be labeled and stored. - (6) The Driller will keep a daily log detailing footage drilled, material used, and stand-by time. The Field Team Leader will keep an independent record of drilling activities in the field notebook to verify the daily logs. One copy of the daily logs will be submitted to the Subcontractor Site Manager and Rockwell International CEARP Manager by the Field Team Leader on a weekly basis. # 1.6. RECORDS - Log of boring - Driller's daily logsField notebook #### 2. MATERIALS DESCRIPTION #### 2.1. PURPOSE To provide procedures for field descriptions of surficial and bedrock materials. #### 2.2. RESPONSIBILITY The Field Team Leader is responsible for describing core and samples following this work procedure. # 2.3. EQUIPMENT AND MATERIALS - Log of boring - Field notebooks - Clipboard - Rulers - Rock-color chart, Geological Society of America - Waterproof pens - Colored pencils - Protractor - Hand lens - Dropper bottle of hydrochloric acid - Rock hammer - Grain-size chart/scale #### 2.4. PROCEDURES - (1) All surficial materials and bedrock samples will be described using the following sequence of parameters: - Footage - Sample type - Percent recovery - General material type - Color - Structural characteristics - Grain sizes - Composition of grains - Degree of sorting - Grain shapes - Minor characteristics - Degree and nature of cementation - Moisture content Procedures for describing each of these parameters are presented below. - (a) Footage: Depth of sample interval. - (b) Sample Type: Continuous drive, cuttings, core, or split spoon. - (c) Percent Recovery: Percent of sample recovered from borehole. - (d) General Material Type: Clay, clayey sand, sandy clay, Silt, sand, gravel, sand and gravel, shale, sandstone, or siltstone. - (e) Color: Color of samples will be described by comparing samples with a standard color chart. Either a Munsel soil color chart or USGS standard color chart will be used. Colors will be described from moistened samples. Any color abbreviations shall follow those set by the standard color chart used. - (f) Structural Characteristics: This parameter describes bedding and other primary features of the sample, including: nature of bedding (e.g., massive, tabular, lenticular, laminated, graded, or even); primary features within beds or other structures (e.g., grading, laminations, cross bedding, channeling, distorted flow banding, and inclusions); and characteristic secondary features (e.g., cleavage, prominent weathering effects, and fracturing) (Compton 1962). - (g) Grain Size: Grain sizes will be classified according to the Wentworth scale (Dresser Atlas 1982). The percentage of each grain
size will be denoted by the following descriptive terms. | Descriptive Term | Percentage | |--------------------------------|------------| | Trace | 1-10% | | Some | 10-20% | | Adjective (sandy, silty, etc.) | 20-35% | | "And" | 35-50% | (h) Composition of Grains: Composition of grains will be described by using the major or dominant grain component first, followed by minor component percentages or the appropriate descriptive term (Compton 1962). - (i) Degree of Sorting: The degree of sorting is a measure of particle size uniformity. It will be visually estimated in the field using sorting charts (Dresser Atlas 1982). - (j) Grain Shapes (Roundness): Roundness is the degree of a clastic particle abrasion and is reflected in the sharpness of its edges and corners. Grain shapes will be determined visually in the field using grain shape charts (Dresser Atlas 1982). - (k) Minor Characteristics: Minor and/or unusual characteristics of a sample will be noted in the description including weathering. - (1) Degree and Nature of Cementation: The degree of cementation will be recorded as uncemented or unconsolidated, poorly cemented or consolidated, or well cemented, based on visual inspection. The nature of calcium carbonate will be determined based on the reaction of samples to dilute hydrochloric acid. The intensity of the hydrochloric acid reaction will be described as no reaction, weak reaction, or strong reaction. - (m) Moisture Content: A general qualitative description will be used to describe moisture content. Dry: No discernible moisture present. Damp: Enough moisture present to darken the color of the sample, but does not feel moist to the touch. Moist: Sample feels moist to the touch. Wet: Visible water is present. (2) Geologic descriptions of core will follow the same procedures as outlined above. Additional records required for core are: the cored (run) interval, the footage of recovered core and percent recovery, and the Rock Quality Designation (RQD) of the cored interval. RQD is the percent of sound core recovered in pieces greater than four inches in length (Deere 1964). #### 2.5 RECORDS - Field Notebooks - Log of Boring # 2.6. REFERENCES - Compton, R. R., 1962, Manual of Field Geology: John Wiley and Sons, Inc., New York, 378 pp. - Deere, D. U., 1964, Technical Description of Rock Cores for Engineering Purposes: Rock Mechanics and Engineering Geology, Vol. 1, pp. 16-22. - Dresser Atlas, 1982, Well Logging and Interpretation Techniques: Dresser Atlas, Inc., 228 pp. # 3. FIELD SCREENING FOR TOTAL ORGANIC COMPOUNDS IN SOIL SAMPLES #### 3.1. PURPOSE To field screen soil samples for volatile organic compounds. #### 3.2. RESPONSIBILITY The Field Team Leader is responsible for field screening of samples following this work procedure. # 3.3. EQUIPMENT AND MATERIALS - Field notebooks - Log of boring - Adhesive labels - Waterproof pen - Sample bottles (500-ml amber glass) with lids - Photoionization detector (PID) - Organic vapor analyzer (OVA) #### 3.4. PROCEDURES - (1) Approximately 50 to 100 ml of soil will be placed in 500-ml amber glass jars, and an equal amount of deionized water will be added to the jar. The jar will then be shaken and allowed to stand for 30 minutes allowing organic compounds to volatilize. - (2) The sample jars will be labeled with the date, time, borehole number, sample depth, and Field Team Leader's. - (3) Field screening of the samples for total organic vapor concentrations will be conducted using an OVA and a PID. The instruments will be calibrated to the volatile organic compounds of concern at each site (Roffman et al. 1986). - (4) The lid of the sample jar will be opened slightly and the probes of the instruments will be placed inside the jar. Values registered on each instrument will then be recorded in the field notebook. The date and time of the reading, the borehole number, and the sample depth will also be recorded in the field notebook and log of boring. #### 3.5. RECORDS Field notebooks Logs of borings #### 3.6. REFERENCES Roffman, H. K., M. D. Neptune, J. W. Harris, A. Carter, and T. Thomas, Field Screening for Organic Contaminants in Samples from Hazardous Waste Sites, 1986, Abstract from: Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater-Prevention, Detection, and Restoration, Houston, Texas, 8 p. # 4. LABELING AND TORAGE OF SAMPLES #### 4.1. PURPOSE To provide procedures for labelin and storage of boxed cores and jarred samples. #### 4.2. DEFINITIONS - Storage Facility: The location where boxed cores and/or jarred samples will be stored without fre sing. #### 4.3. RESPONSIBILITY The Field Team Leader is respon ble for labeling and storage of all samples. # 4.4. EQUIPMENT AND MATERIALS - Labeling Pens - Adhesive Labels - Inventory Sheets - Field Notebook # 4.5. PROCEDURES - (1) Label core boxes and sample ars in the field as samples are collected. All samples will be labeled with - (a) location - (b) borehole designation - (c) date - (d) depth - (e) box or jar number - (f) total number of boxes o jars for the borehole - (g) Field Team Leader initi s Check that all information is co set before leaving the field with samples. (2) Transport samples to storage 'acility. (3) Place samples in storage facility. Samples should be stacked in order by hole number and in neat and orderly arrangement for accessibility. All samples from each well should be placed in one location, and the labels should be visible. # 4.6. RECORDS - Field Notebook # 5. DECONTAMINATION OF DRILLING, TESTING, AND SAMPLING EQUIPMENT #### 5.1. PURPOSE To provide procedures for equipment decontamination. #### 5.2. DEFINITIONS Equipment: Augers, drill pipe, bits, sampling devices, tools, tremie pipe, packers, water pipe, geophysical logging equipment, casing, electric well sounders, pumps, and all other miscellaneous equipment used in drilling, sampling, testing, logging, installing, and developing monitor wells. Decontamination: Decontamination is the process of cleaning equipment to avoid transport of contamination. #### 5.3. RESPONSIBILITY The Field Team Leader is responsible for supervising and approving the decontamination cleaning of equipment. The Driller is responsible for cleaning all drilling, sampling and well construction equipment and assisting the geophysicist in cleaning geophysical probes and cables. #### 5.4. EQUIPMENT AND MATERIALS - Portable Steam Cleaner - Brushes and Buckets - Organic-free Water - Alkaline Detergent #### 5.5. PROCEDURES # 5.5.1. Drilling and Well Installation Equipment (1) Decontaminate all drilling equipment before starting the first borehole. - (2) Upon termination of a borehole, decontaminate all drilling, packer testing, and geophysical logging equipment as well as stainless steel well casing and screen. - (3) Decontamination will include: - (a) a rinse with the steam cleaner using organic-free water: - (b) scrubbing with brushes using a solution of organic-free water and an alkaline detergent; and - (c) a final rinse with the steam cleaner using organic-free water. - (4) Cover drilling equipment with a clean sheet of plastic after it is decontaminated. Install wet casing and screen in the borehole. - (5) Decontaminate all equipment and tools used in well installation. - (6) Before moving to the next drill site, decontaminate the wireline cable by pulling it off the drum to the appropriate length. Also decontaminate the rig table and mast. # 5.5.2. Sampling Equipment - (1) Decontaminate all sampling equipment before collecting the first sample and after each sample collected. - (2) Decontamination will include: - (a) scrubbing with brushes using a solution of organic-free water and an alkaline detergent; and - (b) a rinse with organic-free water (a steam cleaner may be used). - (3) Decontaminate the electric well sounder probe and cable before and after measuring water levels. - (4) Decontaminate pumps and pump line exteriors before and after pumping a monitor well. Decontaminate the internal system of pumps and tubing by pumping at least 1 tubing volume of organic free water through the pump. (5) Discard bailer rope after each use. Attach new polypropylene rope to the bailer at each well. # 5.6. RECORDS - Field Notebook #### 2. WELL INSTALLATION #### 8.1. PURPOSE To provide procedures for monitor well construction and installation. #### 8.2. DEFINITIONS Monitor Well: Two-inch well designed for monitoring water levels and groundwater quality. Alluvial Well: Monitor well completed in surficial materials (Rocky Flats Alluvium, colluvium, or valley fill alluvium). Bedrock Well: Monitor well completed in saturated sandstone of the Arapahoe or Laramie Formations. Piezometers: Two-inch well completed in claystone of the Arapahoe or Laramie Formations for monitoring water levels. # 8.3. RESPONSIBILITIES The Subcontractor Site Manager is responsible for selecting completion intervals and well designs. Completion intervals and well designs will be approved by the Rockwell International CEARP Manager prior to well construction. The Field Team Leader is responsible for supervision and documentation of well completions. The Driller will assemble and install all materials. # 8.4. EQUIPMENT AND MATERIALS - Schedule 5 Type 316 stainless steel casing - Schedule 5 Type 316 stainless steel wire wrap screen - Type 316 stainless steel centralizers - Beatonite pellets - Appropriate filter pack - Neat Type I or II Portland cement - Concrete mix - Organic-free water - Five-gallon buckets - · Tremie pipe - Hoses and pump - Shovel - Trowel - Protective surface casing - Padlock - 100-ft tape measure divided in tenths of a foot with a weight on the end - Electric well sounder - Well construction summary data sheets - Field notebook #### 8.5. PROCEDURES - (1) Pull all augers and drill pipe from borehole. If borehole stability is a problem, the wells may be completed inside the hollow stem augers. - (2) Decontaminate drilling equipment and casing. - (3) Measure depth to
water and design well construction. Alluvial Wells. The screened interval in alluvial wells will extend from approximately 1 ft below the top of bedrock to 2 to 5 ft above the water table. A filter pack designed for the grain size of the formation will be placed around the screened interval and will not extend more than 2 ft above the top of the screened interval. A 1-ft-thick bentonite seal will be placed above the filter pack, and the annulus will be tremie grouted with neat Portland Type 1 or 11 cement to the surface. Cement may be poured from the surface if the cemented interval is within 5 ft of the surface. A locking steel protective casing will be placed over the well, and a concrete surface pad, approximately 3 ft in diameter, will be poured around the surface casing. The pad will be sloped so as to drain away from the well. Bedrock Wells. Bedrock monitor wells will be screened across the entire interval of saturated sandstone with a minimum screened interval of 5 ft. Filter pack, bentonite, cement grout, protective casing, and a concrete pad will be placed as described above. <u>Piezometers</u>. Deep boreholes which do not encounter sufficient sandstone thickness after drilling through 70 ft of claystone with an average hydraulic conductivity of 5 x 10⁻⁷ centimeters per second will be completed as piezometers with two-inch, Schedule 80, threaded and flush jointed, polyvinylchloride (PVC) casing. Ten ft of machine slotted casing will be placed at the base of the casing string. The remainder of the well completion will be as discussed above for alluvial monitor wells. - (4) Calculate the amount of filter pack, bentonite, and cement that will be required for well construction. - (5) Weld end cap on the bottom of the well screen with a stainless steel welding rod, and thread the casing string together. - (6) Place centralizer in the center of the screened interval, and determine its location on the casing string to the nearest 1/100th foot. - (7) Measure the length of the screened interval and the blank casing to the nearest 1/100th ft. - (8) Measure total depth of the open borehole. If the bottom of the borehole is below the base of the screen, backfill it with bentonite pellets or tremie cement grout to the base of the screen. If the open borehole is backfilled with grout, allow it to set for 24 hours before well completion. Measure total depth of the open borehole again. - (9) Place casing string in open borehole. Place slip-on cap on top of the casing string. Measure stick up to determine total well depth. Check well design for correct total depth. - (10) Slowly pour filter pack into borehole annulus, making sure it is evenly distributed around the well casing. Gently shake the casing as filter pack is added to avoid bridging of the filter pack. Measure depth to the top of the filter pack after each bag is added. Make more frequent measurements as filter pack approaches the top of the screened interval. - (11) Record the final depth to the top of the filter pack on well construction summary sheet. Record amount of filter pack used in the field notebook. - (12) Pour bentonite pellets into borehole annulus, making sure they are evenly distributed around the well casing. - (13) Measure depth to the top of the bentonite seal and record on well construction summary sheet. Record amount of bentonite used in the field notebook. - (14) If the bentonite pellets are above the water table, add 1 to 2 gal. of organic-free water to the hole. Allow the bentonite to swell for approximately 15 minutes before grouting to the surface. - (15) Mix neat Type I or II Portland cement (as directed by the Subcontractor Site Manager) at a mix ratio of 6 to 9 gal. of water per 94-lb bag of cement. - (16) Place tremie pipe in borehole annulus and attach appropriate hoses and pump. - (17) Pump grout down borehole annulus. Pour grout from the surface if the cemented interval is within 5 ft of the surface. Record amount of cement used in field notebook. - (18) Measure final stick-up of well casing and record on well construction summary sheet. - (19) Set protective surface casing over stainless steel well casing. - (20) Allow grout to set for 24 hr. - (21) Place form for concrete surface pad around well casing. - (22) Mix concrete and pour surface pad around well casing. Slope pad away from the well with a trowel. - (23) Weld well number on protective surface casing. # 8.6. RECORDS - Well Construction SummaryField notebook # 9. WELL DEVELOPMENT #### 9.1. PURPOSE To provide procedures for well development. #### 9.2. DEFINITIONS Well Development: Well development is the process by which fines from the formation and/or filter pack are removed from the vicinity of the well bore in order to increase the efficiency of the well (UOP Johnson Division 1975). # 9.3. RESPONSIBILITY The Subcontractor Site Manager is responsible for determining which method of development will be used. Well development methods will be approved by the Rockwell International CEARP Manager prior to well development. The Field Team Leader is responsible for well development. The Driller will be responsible for supplying an air compressor with an air filter if the well is developed by the air lift method. # 9.4. EQUIPMENT AND MATERIALS - Electric well sounder - Tape measure calibrated in tenths of feet - Stainless steel pump* - Air compressor* - Tesson bailer* - Bailer rope* - PVC drop pipe* - Gasoline powered generator* - One liter beaker - Watch - Calculator - Well development summary sheets - Field notebook *NOTE: The use of these materials will depend on the method of well development selected. #### 9.5. PROCEDURES The well will be developed by pumping, bailing, or air-lifting. Pumping is the preferred method of well development and will be used wherever possible. Air-lifting is less desirable because the potential exists for oils from the air compressor to enter the wells, but may be necessary to adequately stress the wells. An air filter will be used if air-lifting is necessary. Bailing is not an efficient method of well development because of the low flow rates induced by bailing. Bailing will only be done in the event of pump failure and to remove sediments in the bottom of the casing. - (1) Decontaminate all equipment prior to well development. - (2) Measure the water level in the well. - (3) Record the water level on the water level data sheet. Record the date, time, well, and development methods on the well development summary sheet. #### 9.5.1. Pumping Well development by pumping will be accomplished by means of a two-inch stainless steel piston pump. The pump will be lowered to approximately I ft above the bottom of the well. The well will then be pumped until ten casing volumes of water have been removed from the well, until the well water is clear, or until 4 h have elapsed. The pump will be raised 2 ft at periodic intervals until the entire screened interval is developed. #### 9.5.2. Air Lifting Well development by air lifting will be accomplished by using an air compressor and 1-in. PVC air line. An air filter will be attached to the air line from the air compressor to prevent the introduction of compressor oils or other foreign materials into the well. The 1-in. PVC air line will be lowered until within approximately 2 ft of the bottom of the well. The air line from the air compressor will then be attached to the top section of PVC pipe. The well will then be developed by the introduction of compressed air into the well for approximately fifteen minutes, or until a column of water is removed from the well. The well will then be allowed to recover and another column of water discharged to the surface. This process will be repeated until 10 casing volumes of water have been removed from the well, until the produced water is clear, or until 4 h have elapsed. At periodic intervals, the air line will be raised 2 ft until the entire screened interval is developed. #### 9.5.3. Bailing Well development by bailing will be accomplished using a Teflon bailer and small diameter polypropylene bailing rope. Water, formation and/or filter pack materials will be removed from the well by bailing until 10 casing volumes of water have been removed from the well, until the well water is clear, or until 4 h have elapsed. The bailing rope will be discarded following well development. #### 9.6. RECORDS - Well development summary sheets - Field notebook #### 9.7. REFERENCES Johnson, E. E., Inc., Groundwater and Wells - A Reference Book for the Water-Well Industry, 1980, Johnson Division, UOP, Inc., Saint Paul, Minnesota, 440 p. #### 11. WELL PURGING #### 11.1. PURPOSE To provide procedures for well purging. #### 11.2. DEFINITIONS Casing Volume: The casing volume is the volume of water standing inside the casing, i.e., the distance between the water level and the bottom of the casing (length of the water column in the well) multiplied by the inner cross-sectional area of the casing. Well Purging: Purging is the removal of sufficient water from the well so that representative formation waters enter the well and can be sampled. Purging will consist of removing three casing volumes. #### 11.3. RESPONSIBILITY The Subcontractor Site Manager is responsible for selecting well purging methods. Well purging methods will be approved by the Rockwell International CEARP Manager prior to purging. The Field Team Leader is responsible for purging wells prior to sampling. #### 11.4. EQUIPMENT AND MATERIALS Wells will be purged using dedicated bladder pumps, dedicated Teflon bailers, or portable sampling pumps. Because of the various purging methods, some or all of the following equipment will be needed. - Bladder pump - Oil-less air compressor - Stainless steel piston pump - Polypropylene rope - Large container of known volume - Deionized water - Watch - Calculator - Pencil - Field Water Quality Data Sheet - Field notebook #### 11.5. PROCEDURES #### 11.5.1. Calculations (1) Calculate
the casing volume using the formula Casing volume (gallons) = (TD - WL) * (A), where TD = total depth of the well from ground surface (ft), WL = depth to water from ground surface (ft), A = cross sectional area of the well (gallons/ft), = 0.163 for a 2-in. well, 0.367 for a 3-in. well, 0.652 for a 4-in. well, and = 1.468 for a 6-in. well. Note that total depth and depth to water must be measured from the same datum. The total depth of the casing is usually reported as depth below ground surface and the depth to water is measured from the top of the inner casing. In order to correct the depth to water measurement, subtract the height of casing above ground from the depth to water measured from the top of casing. - (2) Multiply the casing volume by three. This is the volume of water to be purged. - (3) Record calculations in the field notebook and on Field Water Quality Data Sheet. #### 11.5.2. Purging Remove three casing volumes of water from the well using the pump, the dedicated Teflon bailer, or the portable sampling pump. Regardless of the methods used to purge the well, record the total volume purged and the time when purging begins and ends. Dedicated Pump System. The dedicated pump system will consist of an air-actuated bladder pump with downward flow checking valves on the inlet to the inside of the bladder and on the tubing above the outlet from the inside of the bladder. Air is delivered to the outside of the bladder and pressure is maintained long enough that the bladder is compressed and water inside it is forced into the discharge tubing. Water is kept from exiting the bottom of the pump by the lower check valve. The air pressure is vented to surface through the same pressurizing tube (requiring a time dependent on length of tubing, required air pressure, and depth of submergence of the pump). Water forced into the discharge tubing is held by the upper check valve. The cycle is repeated until discharge reaches the surface and purging begins. Because of this pumping mechanism, the discharge is delivered to the surface in cyclic slugs, but the pressurizing air is never in contact with the water. The upper check valve has a small-diameter bypass so that water in the discharge tubing will drain back into well and not freeze. - (1) Attach compressor to Pump Pressure Inlet on controller (use oil-less compressor to protect pneumatic logic components inside controller). - (2) Connect red air hose between well cap and Pump Supply on controller. - (3) Position Refill and Discharge knobs to center position (12 o'clock) and start compressor. Record the time at the start of pumping in the field notebook. - (4) Set gas pressure level to a pressure sufficient to lift the column of water in the discharge tubing plus 30 psi, but do not exceed 125 psi total. - (5) Adjust Discharge knob so that venting occurs at the end of the slug discharge. - (6) Decrease Refill cycle time until volume discharged in each cycle begins to decrease. If decrease is immediate, lengthen both Refill and Discharge cycle times and repeat steps 5 and 6. - (7) Measure volume produced in a container of known volume (e.g., plastic trash can or plastic bucket). - (8) Continue pumping until the appropriate volume has been purged. Record time at end of pumping as well as the total volume pumped in the field notebook and on the Field Water Quality Data Sheet. - (9) Measure and record water level at the end of pumping. #### Bailing - (1) Put on surgical gloves. New cotton gloves may be worn over the surgical gloves if desired. - (2) Place a sheet of plastic over the casing. Cut a hole in the plastic for the casing and spread sheet on ground around the well. The plastic and equipment should be arranged in such a manner to enable the samplers to do all work while standing on the plastic. - (3) Attach new polypropylene rope to bailer inspect the check valve, top bail, knot, and rope. Do not allow bailer or rope to contact anything but clean plastic. If any components are loose or damaged, replace them. Decontaminate equipment if any new parts are used. - (4) Lower bailer into well, fill with water, and hoist to surface, coiling the rope into the hands. - (5) Empty bailer into a container of known volume (e.g., 5-gai. bucket). - (6) Continue bailing until appropriate volume has been purged, as determined by volume in container. - (7) Record volume purged in the field notebook and on Field Water Quality Data Sheet. #### Portable Pump (1) Decontaminate the pump and sufficient tubing by scrubbing with an alalkaline detergent solution followed by a deionized water rinse. Pump at least one tubing volume of deionized water through the pump. - (2) Place decontaminated pump approximately 1 ft above the bottom of the well. - (3) Place up-hole end of the discharge line in container of known volume (e.g., plastic trash can or 5-gal. bucket). - (4) Connect compressor to pump controller. - (5) Turn on compressor and pump appropriate volume as measured in container. - (6) Record purged volume on the Field Water Quality Sheet. - (7) After collecting the sample, decontaminate pump by scrubbing all tubing that has been pulled off the reel and the pump itself with an alkaline detergent solution and rinsing with deionized water. Pump at least one tubing volume of deionized water through the pump. #### 11.6. RECORDS - Field water quality sampling and analysis form - Field notebook #### 11.7. REFERENCES U.S. Environmental Protection Agency, 1986, Hazardous Waste Groundwater Task Force Protocol for Groundwater Evaluation, Office of Solid Waste and Emergency Response, Washington, D.C., DIR 9080.0-1. #### 12. GROUNDWATER SAMPLING #### 12.1. PURPOSE To provide procedures for groundwater sample collection. #### 12.2. RESPONSIBILITIES The Subcontractor Site Manager is responsible for assigning specific wells to be sampled. The sampling schedule will be approved by the Rockwell International CEARP Manager prior to implementation. The Field Team Leader is responsible for sampling monitor wells, field water quality measurements, and transportation of samples to the onsite laboratory. #### 12.3. EQUIPMENT AND MATERIALS - Sample bottles provided by on-site laboratory - Thermometer inscribed in degrees Centigrade - pH meter - Portable electrical conductivity meter - Field notebook #### 12.4. PROCEDURE - (1) Pick up sample bottles, cooler, blue ice packs, sample labels, and chain-ofcustody form at the laboratory. - (2) Pre-label bottles before leaving the laboratory. Place sample bottles on ice. - (3) Produce the sample with the same device used to purge the well. - (4) Collect the sample immediately after purging if possible. If the well is essentially dry after pumping, measure the water level in the well on a periodic basis (approximately every three hours). Collect the volatile organic samples within three hours of purging. Collect the rest of the samples as soon as there is sufficient volume in the well to sample as soon as there is sufficient volume in the well to fill the sample bottles (approximately 4 gallons). Attempt to collect an aliquot for field tests and laboratory analysis (in that order) 24 hours after purging even if there is insufficient water in the well to fill all sample bottles. - (5) Produce sufficient sample for performance of four field water quality tests (two 500 milliliter beakers one for temperature and conductivity and one for pH). Perform one field water quality test before sampling, two during sampling, and one after sampling following procedures in this document. - (6) Rinse each bottle with formation water directly from the pump discharge or bailer. Fill the bottle about one-quarter full, cap the bottles, and rinse both bottle and cap with a swirling motion. Discard rinse water. Immediately fill bottle with sample, cap, complete label, rinse bottle exterior with deionized water, place in plastic bag, and return bottle to cooler. Remove only one bottle from the cooler at a time for filling. - (7) After rinsing the volatile organics vials and caps with sample, fill each vial to overflowing with sample. Carefully place the cap on the vial so that air is not captured, and tighten. Invert the vial and tap lightly. If bubbles are observed, repeat the process. - (8) Record time of sampling on Field Water Quality Sheet and in field notebook. Also note weather conditions and any other observations (e.g., insufficient sample to fill all bottles, bottles broken, etc.). - (9) Complete chain-of-custody form and indicate analyses to be performed in the laboratory. - (10) Deliver samples to the on-site laboratory within 3 hours of collection for filtration and/or preservation of appropriate bottles. #### 12.5. RECORDS - Field water quality and analysis sampling form - Field notebook #### 12.6. REFERENCES U.S. Environmental Protection Agency, 1986, RCRA Ground-Water Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response, Washington, D.C. #### 13. FIELD MEASUREMENTS #### 13.1. PURPOSE To provide procedures for field measurements made at the site of monitor wells and surface water stations. #### 13.2. DEFINITIONS Field Measurements: These measurements consist of temperature, pH, conductivity, dissolved oxygen, organic vapors, and qualitative observations of color and odor. #### 13.3. RESPONSIBILITY The Field Team Leader is responsible for measurement of field parameters. #### 13.4. EQUIPMENT AND MATERIALS The equipment used for field measurements has been selected based on proven durability in field applications; however, field equipment is still rather fragile. Equipment should be kept spotlessly clean at all times and protected from temperature extremes. Conductivity meters and pH meters will be calibrated daily following the manufacturers' instructions. All other instruments will be calibrated weekly. Each instrument will have its own calibration log book, and all calibrations will be documented. The following equipment is
normally used: - Thermometer inscribed in degrees Centigrade - pH Meter with calibration buffer solutions - Portable electrical conductivity meter with calibration - Standard solutions - Photoionization Detector (PID) - Organic Vapor Analyzer (OVA) - Deionized water - Pencil - Field Water Quality Sheets - Field notebook - Calibration notebooks #### 13.5. PROCEDURE #### 13-5.1. Temperature Measurement Immerse the thermometer bulb in a beaker filled with sample. Make the measurement immediately after sampling so that the temperature will not have time to change. Read the thermometer while it is still immersed, to the nearest degree Centigrade, and record the reading in the field notebook and on the Field Water Quality Data Sheet. Rinse the thermometer with deionized water and put it away. Calibrate the thermometer on a weekly basis against a National Bureau of Standards certified thermometer. Document calibrations in the calibration log book. #### 13.5.2 pH Measurement (VWR Scientisic 1976) - (1) Turn on meter. - (2) Check battery. - (3) Place partially filled 50-milliliter beakers containing pH 4 and pH 7 buffer solutions into a water bath (well water) to maintain the temperature of the buffers as close as possible to the temperature of the well water. The water bath will need to be refilled periodically with water removed from the well. - (4) Remove boot from electrode. - (5) Rinse electrode with deionized water. Be sure any salts are removed. - (6) Immerse bulb in pH 7 buffer. - (7) Adjust using calibration knob to read 7. - (8) Rinse electrode with deionized water. - (9) Immerse bulb in pH 4 buffer. - (10) Adjust using temperature knob to read 4 (this is a span adjustment and not a true temperature correction). - (11) Measure the temperature of the buffers using a thermometer, following the procedures described previously. Be sure to rinse the thermometer with deionized water between solutions. - (12) Collect some sample in a beaker (rinse the beaker with sample). - (13) Rinse the thermometer with deionized water, and measure the temperature of the sample. If the buffer solutions are not at the same temperature as the samples, put fresh formation water in the water bath, allow time for temperature equalization, and repeat the calibration procedure. - (14) Rinse the electrode in deionized water. - (15) Immerse the bulb in the sample. - (16) Read the pH to the nearest tenth of a pH unit. Stir the sample with the electrode to hasten reading stability. - (17) If the pH is greater than 7, re-calibrate using the pH 10 buffer instead of the pH 4. Perform steps 5 through 16 above. If most samples have pH values greater than 7, pH 10 buffer should be routinely substituted for pH 4. - (18) Record the pH reading on the data sheet and in the field notebook. Document calibrations in the calibration log book. - (19) Rinse the electrode with deionized water and replace plastic boot. - (20) Turn off meter. #### 13.5.3 Conductivity Measurement (YSI 1976b) - (1) With conductivity meter off, check zero position. Adjust if necessary. - (2) Switch to red line and adjust. - (3) Calibrate meter against standard solutions and record calibrations in the calibration log book. - (4) Collect a sample in a beaker (rinse beaker with sample before collecting). - (5) Rinse probe with deionized water. - (6) Immerse probe in the sample. - (7) Switch to temperature. Record the temperature on Field Water Quality Sheet and in field notebook (may be different from earlier temperature measurement). - (8) Switch to conductivity and record both the needle reading and scale knob setting. Do not perform any calculations. Record the two values on the Field Water Quality Sheet and in field notebook. - (9) Turn meter off. - (10) Remove probe from sample and rinse with deionized water. - (11) Rinse beaker with deionized water. #### 13.5.4. Dissolved Oxygen Measurement (YSI 1976a) - (1) Place meter in intended operating position. Do not move without calibrating. - (2) With meter off, adjust meter to zero using center screw. - (3) Switch meter to zero and adjust to zero with zero knob. - (4) Switch meter to full scale and adjust to "15" on ppm scale using full scale knob. - (5) Attach probe to the meter and wait 15 min to polarize probe. - (6) Perform air calibration: - Switch to calib O2 position; - Place the probe in moist air (small calibration bottle with a few drops of water) and allow 10 min for temperature stabilization (can be same as polarization wait); and - Set meter to local altitude (6,000 ft amsl) using calib knob -- be sure reading is steady; Calibrate meter against standard solutions (on a weekly basis). Document calibrations in calibration log book. - (7) Place probe in sample and stir by raising and lowering the probe about 1 ft per s. Allow probe to equilibrate to sample temperature and dissolved oxygen. - (8) Turn switch to temp and read temperature from lower scale. - (9) Set O2 solubility factor dial to observed temperature, using the salinity index scale on the dial (salinity determined using SCT meter each bar on index represents 5,000 ppm chloride concentration). - (10) Turn switch to read O2 and read dissolved oxygen value in ppm directly from the meter. - (11) Turn off meter, rinse probe with deionized water, add a few drops of deionized water to the sponge in the probe holder, and return probe to holder. #### 13.5.5. Photoionization Detector Measurements (HNU Systems 1975) - (1) Remove plate on the top half of the case by pulling up on the two fasteners. The extension tube and battery charger are located under this plate. - (2) Attach extension tube to the end of the probe. - (3) Check to see if the instrument's function switch is in the "OFF" position. - (4) Install the 12 pin interface connector for the probe into the connector on the instrument box by carefully matching the alignment key of the probe connector to the slots in the box connector. Twist the connector in a clockwise manner until a distinct snap and lock is felt. - (5) Check the battery supply by turning the function switch to the "BATT" position. The meter needle should deflect to the far right or well within - the green zone (NOTE: The battery check indicator will not function unless the probe is attached). If the needle is below or just in the green zone or the red LED light is on, the battery should be recharged. - (6) To zero the instrument, turn the function switch to the "STANDBY" position and rotate the "ZERO" potentiometer until the meter reads zero. This is an electronic zero adjustment. Calibration gases are not needed. - (7) Turn the function switch to the selected scale. There should be a humming sound emanating from the probe. This is the fan which pulls air into the probe. A blue glow should be seen through the end of the probe. Do not stare at this glow, as it is an ultraviolet light source which can damage the eyes. An overall check can also be done by passing a magic marker past the tip of the probe. This should generate a reading or jump of the needle. - (8) Place the function switch in the 0 20-ppm range for the most sensitive monitoring. - (9) Before entering a work area, determine the background concentration. This concentration should be used as a reference to readings made in the work area. Under no circumstances should one attempt to adjust the "ZERO" or "SPAN" adjustments while the instrument is being used in the work area (NOTE: When using the 0 20 ppm range, background concentrations up to 1.0 ppm are common in clean environments. This reading is generated internally by the instrument and should be referred to as zero ppm). - (10) Take PID readings in the headspace of a well before making water level measurements. Condensation and dust on the lamp can interfere with proper readings. PIDs do not function well during precipitation events or sudden temperature changes which can fog up the lamp. - (11) Record all readings in the field notebook. #### 13.5.6. Organic Vapor Analyzer Measurements (Foxboro Analytical) - (1) Remove top cover of the instrument. - (2) Move the INSTR switch to ON and allow five minutes for warm up. - (3) Set the audible alarm to a predetermined level by turning the PUMP switch to ON. Adjust the meter pointer to the desired alarm level using the CALIBRATE ALARM (zero) knob. Turn the ALARM LEVEL ADJUST knob on the back of the readout assembly until the audible alarm comes on. Adjust speaker volume with VOLUME knob. The instrument is then preset to activate the alarm when the organic vapor level exceeds that of the setting. - (4) Move the CALIBRATE switch to 10X and adjust the meter reading to zero with the CALIBRATE ADJUST (zero) knob. - (5) Ensure the PUMP switch is ON and observe the SAMPLE FLOW RATE indicator. The flow rate should be approximately 2 units. - (6) Open H2 TANK VALVE one turn and observe the reading on the H2 TANK PRESSURE indicator (approximately 150 psi of pressure is needed for each hour of operation). - (7) Open H2 SUPPLY VALVE one-half to one turn and observe the reading on the H2 SUPPLY PRESSURE indicator. - Caution: Do not leave H2 SUPPLY VALVE open when the pump is not running, as this will allow hydrogen to accumulate in the detector chamber. - (8) Confirm that meter is still reading zero (readjust if required). - (9) Depress the igniter button. There will be a slight "pop" as the hydrogen ignites, and the meter pointer will move upscale of zero. Do not depress igniter button for more than 6 seconds. If burner does not ignite, let instrument run for several minutes and try again. - (10) Move instrument to an area representative of the "lowest ambient back-ground concentration" to be surveyed. Move the CALIBRATE switch to 1X and adjust the meter to read 1 ppm with the CALIBRATE ADJUST (zero) knob. - (11) If the alarm level is to be set above background levels, turn the ALARM LEVEL ADJUST knob on the back of the readout assembly until it activities slightly above background. - (12) Set the
CALIBRATE switch to the desired range. - (13) Using one hand operation, survey the areas of interest while observing the meter and/or listening for the audible alarm indication. - (14) Record readings in the field notebook. #### 13.5.7. Color and Odor Record any observations regarding the general condition of the samples. Especially note color, turbidity and odor. #### 13.6. RECORDS - Field water quality data sheets - Field notebook #### 13.7. REFERENCES - Foxboro Analytical Century Systems Portable Organic Vapor Analyzer Instructions and Service Manual. - HNU Systems Inc., 1975, Instruction Manual for Model PI101 Photoionization Analyzer. - VWR Scientific, 1976, Care and Feeding of the Mini and Digital pH Meters, Model 47. - Yellow Springs Instrument Co., 1976a, Instruction Manual, YSI Model 51B Dissolved Oxygen Meter. - Yellow Springs Instrument Co., 1976b, Instructions for YSI Models 33 and 33M S-C-T Meters. #### 14. WATER LEVEL MEASUREMENTS #### 14.1. PURPOSE To provide procedures for measuring water levels in monitor wells and piezometers. #### 14.2. DEFINITIONS Electric Water Level Sounder: An electric water level sounder is a device to measure the depth from a reference point (usually top of casing) to the water level in a well. The sounder consists of a two-wire cable on a reel with a double electrode tip. The reel houses a battery and voltmeter (or other device such as a light or buzzer) so that electrical continuity is indicated between the electrodes when submerged. The cable is graduated, indicating the length of cable in the well (Todd 1980). #### 14.3. RESPONSIBILITY The Field Team Leader is responsible for water level measurements and accurate recording of data. #### 14.4. EQUIPMENT AND MATERIALS - Electric water level sounder - Deionized water - Extra batteries - Tape measure graduated in hundredths of feet - Watch - Pencil - Photoionization Detector (PID) - Field Water Quality Data Sheet - Water Level Data Sheet - Field notebook #### 14.5. PROCEDURES (1) Record well location, identification number, date, time, and Field Team Member initials in field notebook and on data sheets. - (2) Check headspace of the well for any organic vapors with a PID. Record reading in field notebook. - (3) Decontaminate electrode on sounder and sufficient length of cable by washing with an alkaline detergent solution and rinsing with deionized water so that only clean cable enters the well. - (4) Turn on sounder, check battery, and lower cable into well until the presence of water is indicated. - (5) Hold wire so thumb and index finger are touching the top of casing when probe just enters the water (alarm will sound). Use the north rim of the inner casing for the depth to water reference point. - (6) Raise cable until alarm stops (i.e., probe is just above water level). Lower cable until alarm sound again. Check to see if thumb and index finger are at the same location as before. - (7) Still holding the cable at the measurement point, pull an arm's length of cable from the well. With other hand, push the zero end of tape measure against thumb, holding the measurement point, and measure distance to the first downhole graduation on the cable. Measure to the nearest 1/100th of a foot. - (8) Record the time, cable and tape measure readings in the field notebook. Transfer readings to the Field Water Quality Data Sheet and the Water Level Data Sheet. - (9) Coil the downhole cable into hands to minimize contamination of the entire sounder. - (10) Decontaminate all of the cable that was downhole plus 5 ft by washing with an alkaline detergent solution and rinsing with deionized water. Decontaminate equipment between wells and at the end of each day. - (11) Wrap sounder in clean plastic after decontaminating. #### 14.6. RECORDS - Water level data sheets - Field notebook _____ #### 14.7. REFERENCES Todd, David Keith, 1980, Subsurface Investigations of Groundwater; in Groundwater Hydrology, Second Edition, John Wiley and Sons, Inc., New York, pp. 434-435. SPRAY FÆLD ACTIVITIES FLOW DIAGRAM 82 PROPOSED FINAL COVER SECTIONS Fig. 12 **COLLECTION SUMP** ### UNITED STATES ATOMIC ENERGY COMMISSION ALBUQUERQUE OPERATIONS OFFICE ROCKY FLATS AREA OFFICE GOLDEN, COLORADO ## DESIGN CRITERIA # SANITARY LANDFILL RENOVATIONS DOW CHEMICAL U.S.A. ROCKY FLATS DIVISION BOX 888, GOLDEN, COLORADO INDEX OF DRAWINGS DOW AUTH - 44055 | SHEET
NO. | DRAWING TITLE | DWG. NO. | REV | |--------------|--|-----------|-----| | -1 | COVER SHEET | D-27296-I | A | | 2 | AREA PLOT | • -2 | A | | 3 | SAMPLING STRUCTURE & WATER DIVERSION DETAILS | • -3 | A | | 4 | LANDFILL RING & WATER DIVERSION DETAILS | • -4 | 8 | | | | | | | | | | | | | | 1 | 1 | CRITERIA NOT FOR CONSTRUCTION | A ORIGINA | AL ISSUE | DESIGN | CRITERIA | 7~ | | CM | F Q | 24 | 440555 | 7 | | | |-----------|---|---------|----------------|--------------------------------|-------------|------|----------|--------------|---------------|---|--|--| | - | 7 | - | | uac . | TIME | - | 4777 | | | ⊐ | | | | W.MEE | | | MIT | U. S. ATOMIC EMERCY COMMISSION | | | | | | | | | | MCI. ± ~ | ***** | RICHTER | 4-17-74 | 90007 | PLATS AREA | | | | I. COLORAGO | | | | | W : ~ | " = ~ DISMUSE 4-17-74 DOW CHEMICAL U.S.A. | | | | | | | | | | | | | C-Constit | CHECKER | T | ~ 1 | agory (| FLATS BANGE | | MC1 47 E | #UL#
#UL# | (A. COT.00000 | ı | | | | - | - | T | | | SANI | TARY | LA | NOFIL | | ٦ | | | | m) • 000 | | | - | RENOVATIONS | | | | | | | | | | 07 4000.7 | | 22.5 | | | | | | | | | | | | ~ | | 1.00.0 | 4.30 74 | 948 | - | = | | 1 | 7 | 7 | | | | | - | ١. | <u> </u> | _ | | | | + | | ┪ | | | | .~ | | 12.77.2 | 7 - 7 | DI : | 27296 | - 1 | | | 1 4 | t | | | 1/929 - 084 Od D# 0/8 ## UNITED STATES ATOMIC ENERGY COMMISSION ALBUQUERQUE OPERATIONS OFFICE ROCKY FLATS OFFICE GOLDEN, COLORADO # SANITARY LANDFILL RENOVATIONS ROCKY FLATS ZEFF, COGORNO & SEALY INC., DENVER, COLORADO TRI-CONSULTANTS INC., DENVER, COLORADO HYDRO-TRIAD LTD, DENVER, COLORADO #### INDEX OF SHEETS TDENCH LANDELLI | LANDFILL IRENCH | | |-------------------------------------|---------| | I. GENERAL PLAN & SECTIONS | 27317-1 | | 2. PLAN & PROFILE 0-15+00 | 27317-2 | | 3. PLAN & PROFILE 15+00-25+75 | 27317-3 | | 4. PIPING PLANS & PROFILES | 27317-4 | | 5. SOUTH INTERCEPTOR DITCH | 273+7-5 | | 6. NORTH INTERCEPTOR DITCH | 27317-6 | | SAMPLING STRUCTURE | | | 7. GENERAL PLAN-DAM & RESERVOIR | 273I8-I | | 8. PLAN, PROFILE & SECTIONS-DAM | 27318-2 | | 9. SPILLWAY & OUTLET-PLAN | 27318-3 | | IO. SPILLWAY & OUTLET-DETAILS | 27318-4 | | GENERAL | • | | II. TEST BORING & PIT LOCATION PLAN | 27318-5 | | 12. LOGS OF EXPLORATORY BORINGS & | | | TEST PITS | 27318-6 | I here to certify that these plans for the SANITARY LANDFILL ACTIONALIONS, ROCKY FLATS, were prepared under my direct Action of the owners thereof. 5235 Registered Registered Professional Engineer Colorado 5235 Thereby certify that an behalf of the UNITED STATES ATOMIC ENERGY COMMISSION, OWNER, whose Post Office address is Rocky Flats Area Office P. O. Box 928 Golden, Calorado 8040i Do hereby approve & accept these plans for the SANITARY LANDFILL RENOVATIONS, ROCKY FLATS. Assistant Manager For Construction INVITATION NO 292-75-3 | | | | | | | | | | | | | | 1:_ | | | |------------------|---|-------------------------------|--------|----------|------------------|----|--------|--------|-------|----------|------------|-------------|------|--|--| | O ORIGINAL ISSUE | | | | | \neg | | 8.5.74 | | 1253 | 6.00 | jOH21 | 345614 | 1 | | | | | | | | uec. | 3740 | 87 | 4 | MEX ME | 7/1/4 | . AN 10. | <u> </u> | | | | | | Г | | U. S. ATOMIC EMENCY COMMERCIA | | | | | | | | 1= | | | | | | | ı | RLH 7 2774 BOOKY PLATS AREA OFFICE BOLDER, COLDINAC | | | | | | | | | | | R, COLORAGO | - | | | | | | **** | GEC | 7, 29, 4 | | | | | | | | | | | | | ı | TRI-CONSULTANTS INC. HYDRO-TRIAD LTD. Denver Col | | | | | | | | | | eever Colo | = | | | | | 1 | | | | | | | | | | | | Έ | | | | | L | | ĺ | | | FACILITY NO. 219 | | | | | | | | | | | | 146 | LICHT, MC. | | 0. | : 29.74 | TITLE SHEET | | | | | | | | ـــا | | | | ATTZ | 7-213442 | | 03 | . 7.74 | | | | | _ | | | 2007 | 1= | | | | | ~ | 19/1/ | 1/19/4 | | | | _ | _ | | | | t | | | | | N | ONE | 477 MB | 1.40 | 11714 | D | 2 | 731 | 7- | 0 | | | • | 7 | | | ## UNITED STATES DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE ROCKY FLATS AREA OFFICE ## SANITARY LANDFILL EXTENSION SLURRY TRENCH WRIGHT-McLAUGHLIN ENGINEERS in conjunction with A. G. WASSENAAR, INC. 2420 ALCOTT ST. DENVER, COLORADO ## INDEX OF DRAWINGS - I. TITLE SHEET - 2. PLANT LAYOUT - 3. SITE PLAN - 4. BORING LOGS - 5. BORING LOGS - 6. DETAIL SHEET INVITATION NO. NO. DE-ACO4-82AL18828 | 0 | ORIGINAL ISSUE | | | 9 AUG 32 | 4 L | WA | RCB | BU | 325011 | | |---|----------------|-----------|---------|----------|---|-------|-------------------|------|--------|-------| | ISSIJ€ | | | | DATE | | | DOE CLASS JOB NO. | | | | | TOLERANCES FRACT. FRACT. ANGLE OEC UNLESS NOTEO OTHERWISE | | 1 | 8Y | DATE | U.B. DEPARTMENT OF ENERGY | | | | | | | | | DESIGNED | CRANDEL | 6-82 | ROCKY FLATS AREA OFFICE GOLDEN, COLORADO | | | | | | | | | DRAWN | NELSON | 6-82 | A G WASSENAAR, INC./
WRIGHT - McLAUGHLIN ENGINEERS | | | | | | | | | CHECKED | BRG. | 7/20/02 | | | | | | | | | | APPROVED | 48-04 | 8.382 | 2420 ALCOTT ST. DENVER, COLO | | | | | | | REMOVE BURRS
AND
SMARP EDGES
NEXT ASSEMBLY | | | | | SANITARY LANDFILL EXTENSION | | | | | | | | | | - | | TITLE SHEET | | | | | | | | | | | | | | | | | | | 00€ | CONT. NO. | SUBMITTED | | | SIZE . | DRAWI | IG NUMBER | ISSI | JE . | SHEET | | | | MPROVED, | | 4406 92 | | | | | _ | | | LEGEND: | | |-----------------|---| | TOPSOIL |
UKGAI
DARK
CLAY, | | LANDFILL DEBRIS | - (CE) | | FILL | - CLAYI
MATE) | | SAND | ARKUS
CUBBL
HIGH
ARKUS
VIIIH
(RUCK | | GRAVEL | VERY | | CLAY | SECTI
SECTI
ANKUS
SC-SM | | CLAYSTONE | - HARU
(ARAP
- MEDIU
- PURTI | | ☐- 50/9
☐ | — INDIC
— INDIC
— INDIC | | ~[<u> </u> | - INDIC | | -s | - DEPTH | ANIC, SAMBY TO VERY SAMBY, SILTY TO VERY SILTY, SUME GRAVELLS AND CUBBLES, DRY TO MOIST, BRUMH TO C BRUMH (OL, CL, GC). . SANDY TO VERY SANDY, GRAVELLY, SLIGHTLY STITY, OCCASIONAL COBBLES AND BOULDERS, MOIST, NED-BROM CL-CH, ZONE A BURKOM AREA) Y, CLAYEY, SILTY, HITH MUOD, BRICK, GLASS, METAL AND GENERAL CONSTRUCTION DEBRIS, GENERALLY UNCONSOLIDATED (AF). CEY, SLIGHTLY SILTY, SLIGHTLY SAMDY, SUFT TO MEDIUM STIFF, MUIST TO WET, BROWN TO GRAY (CL). (PROBABLE LINER RIAL FOR EXISTING LANDFILL TRENCH SECTION). KSIC, VERY STIFF, SILTY, SAMUY TU VERY SAMUY WITH SAMU LENSES, GRAVELLY WITH UCCASIUMAL GRAVEL LENSES, UCCASIUMAL ALES AND MUNITERS, CALCAMETRUS, DRY TO MUIST, REDUISH BURAN TO MARK BURDAN (CL. CL-SC. GC) (RUCKY FLATS ALLIVIUM, ALY MEATHERED) ISTC. MEDIUM DENSE TO VERY DENSE, SILTY TO VERY SILTY, SLIGHTLY TO VERY CLAYEY MITH SAMOY CLAY LENSES, GRAVELLY I GRAVEL LENSES, LICASIONAL CORDLES AND BURDERS, CALLANEIUS, MUIST TO WEI, TAN TO BRIGHT TO ULIVE (SR. SH-SC, SC) KY FLATS ALLUVIUM, HIGHLY NGATHERED) DENSE, SANDY TO VERY SANDY, CLAYEY, DRY TO MILST, GRAY TO BRUNN (GC, GC-GP) (RUCKY FLATS ALLUYIUM, HIGHLY HERED) E, SANDY, CLAYEY, GRAY, APPRIXIMATELY L/2" TO 1" DIAMETER (GN-GP) (PHIBABLE LINER MATERIAL FOR LANDFILL TRENCH ION) SIC, VERY STIFF, SANDY WITH CLAYEY SAND LENSES, SILTY TO VERY SILTY, MOIST TO NET, GHAY TO GULD TO ULIVE (CH., CL., M) (ARAPARUE FUNNATION, MEATHERED) TO VERY HARD, WITH OCCASIONAL SANDSTURE AND SILTSTONE LENSES, RUME MINUR LIGHTE, MUIST TO NET, GRAY TO BROWN UM HAND, SANDY WITH COCASIONAL SANDSTONE AND SILTSTONE LEASES, MOIST, CILIVE TO BROWN TO GOLD, ARROSTIC IN WHYER. ATES THAT SO BLUKS OF A 140 CB. NEIGHT IS NEIGHT OF PRIVE A 2 LINCH SAMPLER 9 INCHES? ATES A GRADUAL CHANGE IN MATERIALS ATES LANGE BULK SAMPLE OF MATERIAL TAKEN FRUIT DESIGNATED INTERVAL ATES AVENAGE CUEFFICIENT OF PENMEABILITY OF ? FEET MEN YEAR FON DESIGNATED INTERVAL AS DETERMINED BY A ING HEAD ON CONSTANT NEAD PENMEABILITY TEST. DETAILS OF TEST RESULTS AND PRESENTED IN THE CONTINCT DOCUMENTS. AND EXTENT OF BULK SAMPLE DEPTH AND EXTENT OF 2-INCH DIAMETER MYC PLEZOMETER DOE CLASS 108 NO. U.S. DEPARTMENT OF ENERGY DESIGNED CESARE 6-82 ROCKY FLATS AREA OFFICE ORAWN FRAGUA CHECKED PROVED 6-82 6-82 7/2002 A G WASSENAAR, INC / WRIGHT - MCLAUGHLIN ENGINEERS 2420 ALCOTT ST DENVER, COLO UNLESS NOTED OTHERWISE. REMOVE BURRS AND SHARP EDGES SANITARY LANDFILL EXTENSION BORING LOGS NEXT ASSEMB n 27915-005 1015 or